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Data-Driven Design for Metamaterials and Multiscale
Systems: A Review

Doksoo Lee, Wei (Wayne) Chen, Liwei Wang, Yu-Chin Chan, and Wei Chen*

Metamaterials are artificial materials designed to exhibit effective material
parameters that go beyond those found in nature. Composed of unit cells with
rich designability that are assembled into multiscale systems, they hold great
promise for realizing next-generation devices with exceptional, often exotic,
functionalities. However, the vast design space and intricate
structure–property relationships pose significant challenges in their design. A
compelling paradigm that could bring the full potential of metamaterials to
fruition is emerging: data-driven design. This review provides a holistic
overview of this rapidly evolving field, emphasizing the general methodology
instead of specific domains and deployment contexts. Existing research is
organized into data-driven modules, encompassing data acquisition, machine
learning-based unit cell design, and data-driven multiscale optimization. The
approaches are further categorized within each module based on shared
principles, analyze and compare strengths and applicability, explore
connections between different modules, and identify open research questions
and opportunities.

1. Introduction

Engineered material structures generally benefit from some ex-
treme or spatially varying material properties to achieve higher
performance or complex functionalities.[1–4] Typically, tuning
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material properties involves precise control
of material composition and processing
conditions, which can be both techni-
cally challenging and cost-prohibitive,
particularly when aiming for spatially
varying properties. In contrast, meta-
materials are engineered architectural
materials that can reach a broad range
of properties by carefully designing their
architectures or microstructures rather
than altering the material composition
itself.[5–8] Along with the recent enhance-
ments in manufacturing capabilities,
metamaterials are emerging as a new
paradigmatic material system to enable
unprecedented design flexibility in prop-
erties. They can advance applications in a
wide range of fields, including optics,[9–11]

electromagnetics,[12,13] thermology,[14–17]

acoustics,[18–22] and mechanics.[5,23–27]

Nevertheless, the design of metamateri-
als and their multiscale structures proves to
be a complex process that involves

navigating an infinite-dimensional topological design space,
mapping microstructures to their effective properties across
multiple scales, dealing with numerous local optima in de-
sign optimization, the absence of analytical gradient informa-
tion, and expensive property or performance evaluation. Most
existing metamaterial designs adopt trial-and-error and heuris-
tic methods,[8,24,27–31] which rely heavily on the experience of a
designer, or simple parameter optimization methods,[32,33] con-
fining the metamaterials to a restricted selection of properties.
In some specific cases with relatively simple and differentiable
physical models, gradient-based topology optimization (TO) has
been utilized to facilitate the automatic design of metamaterials.
Nonetheless, these methods are generally not scalable to the de-
sign of multiscale systems of metamaterials that features high-
dimensional design space, nested optimization loops, numer-
ous property/performance evaluations at different scales, and
location-specific microscale designs.

The emergence of data-driven methods has provided solutions
to these challenges by enabling high-throughput property or re-
sponse prediction, reducing the dimensionality of complex prob-
lems, accelerating design space exploration and design optimiza-
tion, and allowing fast solutions to ill-posed inverse design prob-
lems. Data-driven metamaterials design typically includes three
modules, 1) data acquisition: acquiring a precomputed dataset of
unit cells; 2) machine learning (ML) based unit cell design: using
ML to extract information from data and help unit cell designs; 3)
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multiscale design: utilizing unit-cell database and ML models for
design synthesis at the system level. In practical applications, it
is possible to integrate all of these modules into a unified frame-
work or selectively focus on specific modules based on the design
requirements. However, the core idea underlying data-driven de-
sign remains consistent across these modules, which is to extract
meaningful patterns from data that are unavailable or difficult to
obtain with physical models, and incorporate them into the de-
sign process to simplify the complexity in traditional design ap-
proaches. Although these capabilities come with the cost of data
collection and model training, deploying the trained model has
the benefit of negligible inference time, which can significantly
speed up the design process. Data-driven design methods are es-
pecially useful in scenarios where the design problems are high-
dimensional or the governing physics is unknown. They can also
achieve unprecedented design performance owing to their ca-
pability of encapsulating higher design freedom (e.g., heteroge-
neous metamaterials system design) compared to conventional
design methods.

Motivated by the transformative shift of the design paradigm,
the last several years have seen the emergence and growth of data-
driven design reported from a variety of communities. To our
best knowledge, the first implementations of data-driven meth-
ods in the design of multiscale structures date back to 2015, when
Panetta et al.[34] and Schumacher et al.[35] proposed to optimize
multiscale structures with spatially varying material properties by
conceptualizing and harnessing metamaterial databases. Start-
ing in 2018, researchers began to incorporate machine learning
into the design for mechanical and optical metamaterials.[36–42]

After 2020, machine learning methods expanded to additional
metamaterials domains including acoustic, elastic, thermal, and
magneto-mechanical.[43–45]

As evidence of growing attention to data-driven multiscale de-
sign, with or without the use of data, a suite of literature re-
views from different communities have been published in re-
cent years. Each review is centered on particular topics, such
as design,[46–50] manufacturing,[51,52] mechanics,[50,53–59] and spe-
cific ML methods.[47] Despite the meaningful contributions of
each, and of the aggregate, we recognize a lack of discussion
on some points that may impede researchers from unlocking
the full potential of data-driven design for multiscale architec-
tures. First, in the corpus, we observe a disconnect between two
primary lines of approaches, one being the data-driven camp
that harnesses pre-existing ML tools with minimal customiza-
tion, and the other being the physics-based camp that spe-
cializes in physics with limited awareness of recent advance-
ments of data-driven methods. Second, when covering data-
driven design, the prior reviews are typically dedicated to spe-
cific aspects, e.g., ML methods,[47] physical mechanisms,[53–55,59]

individual components of data-driven design.[46,48] In the cur-
rent state of the field, it is difficult to find a singular review
that provides a holistic overview of data-driven design, a sum-
mary of the archetypal design framework, and the critical inter-
dependencies between design components. Third, while some
existing reviews[47,52,59] discussed data preparation as a core mod-
ule, i.e., a step in data-driven design, none have systematically
compared how existing datasets were created and how data qual-
ity could be ensured to better support the design of multiscale
architectures.

The key contributions of our review include the following:

1. We adopt a design-centered perspective to examine a wide
range of papers, categorizing existing methods from various
domains into three modules within the data-driven design
framework. This synthesis of different studies allows us to
present a clear and cohesive picture of “how” data-driven de-
sign has been practiced from data acquisition to single-scale
and multiscale optimization. Our key focus is on the method-
ological aspects of design without specific deployment goals,
i.e., without filtering based on the underlying physical mecha-
nisms, geometric families of unit cells, and fabrication meth-
ods. This holistic approach allows us to uncover the common
threads and overarching principles that have driven the field
of data-driven design.

2. We review the common practices of current data generation
strategies for metamaterial design through a standardized tax-
onomy, discuss key concerns in depth, and attempt to raise
awareness on certain issues that are crucial yet underesti-
mated, or even overlooked, in data acquisition.

3. We review prior data-driven design methods that can be
broadly applied to metamterial design under different physics
(i.e., optical, acoustic, mechanical, thermal, etc.) and raise crit-
ical concerns that are generalizable to all types of metamate-
rial design problems addressed by data-driven methods.

4. We investigate the role of data-driven models and methods in
the context of multiscale system design. Unlike previous stud-
ies that treat data-driven models as isolated solutions, we high-
light their integration into a complete design workflow and
their scalability in handling large databases, multiple scales,
and combinatorial design spaces. By examining these tools
within the broader design process, we aim to offer insights
into how data-driven approaches can be effectively utilized to
enhance the efficiency and effectiveness of metamaterial de-
sign.

We specify our scope as follows:

1. We limit our scope to only the ML-based design methods for
metamaterials and their multiscale systems.

2. We consider a wide range of physics including optical, acous-
tic, mechanical, thermal, and magneto-mechanical, because
the ML methods are usually applicable regardless of the
physics that governs the problem.

3. The reviewed ML methods do not necessarily require prior
training data (i.e., we included past works using methods such
as reinforcement learning (RL) or physics-informed neural
networks).

4. We encompass design for multiscale systems that are built on
either a unit-cell database of metamaterials or ML models. It
includes the use of descriptors of unit cells, surrogate models
for constitutive laws, efficient simulation via ML, optimiza-
tion, and assembly of unit cells based on the database.

This paper is structured as follows: Section 2 gives a brief def-
inition of key concepts underpinning our review and major ML
methods utilized in the works we will cover. In Section 3, isolat-
ing data acquisition from the pipeline of data-driven multiscale
design, we anatomize the common practices of data acquisition
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Figure 1. Hierarchical terminology system in this review. A metamaterial are created by assembling multiple microstructures to achieve properties on
the macroscale. A microstructure is an assembly of multiple unit cells. A unit cell is the smallest representative unit of a material in the microscale to
control its properties.

strategies, with particular attention to the methodological pro-
cedures of shape generation and property-aware sampling. Fol-
lowing this, we provide a brief review of the current practices of
data assessment that aim to ensure data quality and often shed
light on how it can propagate into downstream tasks. Section 4
reviews prior works using ML methods for single-scale metama-
terials design, discusses some critical considerations when eval-
uating these methods, and proposes promising future directions.
Section 5 explores data-driven design methods for multiscale sys-
tems that are built on either a unit-cell database or ML models. It
includes the use of descriptors of unit cells, surrogate models for
constitutive laws, efficient simulation via ML, optimization, and
assembly of unit cells based on the database.

2. Preliminaries

This section defines key terminologies and concepts used
throughout this paper as well as in other data-driven metama-
terials design literature. We also briefly introduce common ML
techniques and how these techniques were applied in the con-
text of metamaterials design.

2.1. Key Concepts

Below, we list working definitions of key concepts to be frequently
used throughout the paper.

Unit Cell: The smallest representative unit of a materialto
control its properties, as shown in Figure 1. It is often re-
ferred to by interchangeable terms such as meta-atom, meta-
molecule, building block, and cell,[7] depending on the physical
mechanism, scale, and geometry. Note that, strictly speaking, a
unit cell originally refers to a repeated structure within periodic
materials.[60] However, in the context of this review, we expand
this concept to include representative units within both periodic
and aperiodic metamaterials, and representative volume element
(RVE) that statistically characterize the collective properties of
stochastic metamaterials.

Microstructure: An assembly of multiple unit cells arranged
in a specific pattern to achieve more complex properties arising
from their arrangement.

Metamaterial: An assembly of multiple microstructures, of-
ten in a periodic pattern, to achieve unique and tailored proper-
ties that cannot be found in natural materials.

Homogenization: A process to bypass or average the de-
tails in the microscale, either deterministic microstructures in
periodic structures or stochastic microstructures with random
distribution, to obtain effective material parameters that could
characterize the overall structural or material response in the
macroscale.[59]

Multiscale Design: The process of designing metamaterials
with desired properties at multiple length scales, from the mi-
croscopic level of a single unit cell to the macroscopic level of the
metamaterial structure.

Module: An independent and reusable unit or component
within the data-driven multiscale design. It provides a specific
functionality that is required for design. An ordered sequence of
modules forms a data-driven multiscale design framework. Mod-
ules of primary interest in this review include data acquisition
(Section 3), ML-based unit cell design (Section 4), and data-driven
mulitscale optimization (Section 5).

Effective Properties: The macroscopic property of a meta-
material that arises from the collective behavior of its
microstructures.[60] These properties are often different from
the intrinsic properties of the constituent materials, and can be
tailored through design and optimization of the microstructure.

Class: A group of unit cells that can be generated from the
same geometric motif or design parameterization.[61]

Representation: A set of parameters, or models, used to di-
rectly characterize unit cells.[61] Representations often involve
the projection of high-dimensional instances into a lower-
dimensional space.

Design Space: The space of all possible design solutions. It
contains all the combinations of design variables. In the context
of metamaterials design, design variables usually refer to geomet-
ric or material design variables.

Shape Space: The geometric design space of unit cells.
Property Space: The response space of unit cells.
Evaluation: To obtain system responses of concern given an

architecture and loading conditions, typically through numerical
analyses such as finite element methods (FEM). In ML literature,
the evaluation process is similar to “labeling”, which refers to the
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process of adding attributes of interest (i.e., labels) to raw data.
Throughout this review, we will assume that the term evaluation
is interchangeable with labeling.

Shape–Property Mapping: A directional mapping from in-
stances in shape space to property space. It is typically learned
through ML using labeled data.

Compatibility: Capability of neighboring unit cells to pos-
sess seamless geometric/mechanical connections, or a lack of
geometric frustration. It is often measured through geomet-
ric/mechanical similarities at the interface of neighboring unit
cells.[62,63]

2.2. Machine Learning

Data-driven metamaterial design processes usually include the
use of ML models to extract useful information from data. The
extracted information can then help the design process in differ-
ent ways. Machine learning approaches used in this context were
mainly from four categories—supervised learning, unsupervised
learning, semi-supervised learning, and RL. We briefly introduce
these categories in this section.

2.2.1. Supervised Learning

In a supervised learning task, we train an ML model to predict
attributes of interest (i.e., labels). The ML model is trained on
a collection of data-label pairs. The data can take various forms,
e.g., vectors, images, and graphs. Depending on the type of la-
bels, supervised learning can be divided into a broad dichotomy:
regression with continuous outputs and classification with dis-
crete ones. Commonly used ML models include neural networks,
kernel machines, and decision trees. Selecting the type of model
is generally done before training, and could be contingent upon
the end task (e.g., regression/classification), data volume, need
to predict uncertainty, and design applications.

Within the context of data-driven metamaterials design
(DMD), supervised learning is most widely-used for creating
shape-property relations. A data pair typically describes a shape,
represented by its parameterization (e.g., parameterized lattice),
and its quantities of interest (e.g., elasticity components or re-
sponse spectra). A key motivation for using supervised learning
has been to replace the resource-intensive evaluation of unit cells
with a faster surrogate model. The types of models have been
based dominantly on neural networks[62,64,65] and sometimes on
Gaussian processes (GPs).[62] Once trained on a large volume of
data, a data-driven model offers on-the-fly predictions of the (ef-
fective) properties of unseen unit cells. Sometimes such a surro-
gate is incorporated into a larger network architecture and trained
end-to-end together with other components.[63,66]

2.2.2. Unsupervised Learning

In contrast to supervised learning, unsupervised learning ex-
tracts information from unlabeled data. More specifically, it ad-
dresses tasks such as clustering, anomaly detection, and dimen-
sionality reduction. In metamaterials design, it is mainly ap-
plied to learning the representation or the distribution of com-
plex metamaterial geometries. Unsupervised learning models

commonly used in metamaterials design are autoencoders, vari-
ational autoencoders (VAE), and generative adversarial networks
(GAN).

Autoencoder[67] is a type of neural network that uses an
encoder-decoder architecture to extract lower-dimensional latent
variables of input data. In metamaterials design, autoencoders
were used to reduce the dimensionality of either metamate-
rial geometries[43] or high-dimensional responses such as scat-
tering parameters.[68] In 2013, Kingma and Welling proposed
the VAE,[69] which has a similar architecture with autoencoders,
while being a type of deep generative model (DGM) that learns
the distribution of data. New data can be generated by sam-
pling latent variables that are low-dimensional and follow a well-
defined distribution. Therefore, the latent representation learned
by a VAE is usually more efficient and interpretable than the orig-
inal metamaterial design representation, especially when consid-
ering high design complexity and freedom.[66,70] In 2014, Good-
fellow et al. proposed the GAN.[71,72] Same as VAEs, GANs can
also generate new metamaterial designs and learn efficient rep-
resentations. A GAN models the generation as a game between
its generator and discriminator. Compared to VAEs, GANs can
generate higher-quality samples.[73]

While VAEs and GANs have been generally used for un-
supervised learning, prior works have proposed variants of
these models, such as conditional generative adversarial net-
works (cGAN) (e.g., refs. [63, 64, 74], conditional variational
autoencoders (cVAE) (e.g., refs. [75, 76]), and VAE-regressor
models (e.g., ref. [66]), that require supervised learning. These
supervised learning models either enable the inverse design
of metamaterials[63,64,74–76] or help construct a property-related
metamaterial latent representation.[66]

2.2.3. Semi-Supervised Learning

Semi-supervised learning trains an ML model on partially labeled
data so that the model can predict the labels of any given data.
Typically it is assumed that the portion of labeled data is much
smaller than the counterpart. This is a commonplace scenario in
ML due to the high labeling cost. Marrying supervised and un-
supervised learning, semi-supervised learning aims to improve
the performances of either. It also inherits most of the ML tasks
above, such as semi-supervised classification and regression, and
semi-supervised generative modeling.

Within DMD, the efficacy of semi-supervised learning has
been demonstrated in some works. In the design of photonic
metasurfaces, Ma et al. used both labeled and unlabeled data
when training the prediction network to improve the regression
with a less computational overhead of data preparation.[75] Al-
though the idea of semi-supervised learning could sound com-
pelling, the efficacy comes under some conditions; in-depth dis-
cussion on this point can be found in some reviews dedicated to
semi-supervised learning.[77,78]

2.2.4. Reinforcement Learning

Reinforcement learning (RL) is another category of ML methods
used in metamaterials design. It is modeled as a Markov decision
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process,[79] where an agent takes actions in an environment to
maximize a reward. The goal is to learn an optimal policy that
guides the action-taking strategy. Different from supervised, un-
supervised, and semi-supervised learning, RL does not require
an initial dataset to learn from. Instead, the agent in RL learns
from its experience of exploring the action space and receiving
rewards. There have been successful applications of RL in areas
such as gaming and robotics. Reinforcement learning is usually
applied to solving sequential decision-making processes. But
with a proper definition of the action space and sequential
decision-making setting, the design of metamaterials can also
be formulated as RL problems, as shown in prior works.[44,80,81]

3. Data Acquisition

3.1. Overview

Creating and leveraging datasets of unit cells has been a core en-
abler of the recent success of DMD. Data acquisition in multi-
scale design is a decision-making activity that determines a finite
collection of structure-property pairs, which delegates the space
to be explored in downstream tasks. When one strives to exploit
the power of DMD, data acquisition presents multifaceted open
challenges, such as exploration of high-dimensional design space
of unit cells, resource-intensive design evaluation in particular
for large datasets, many-to-one mapping from shape to property,
distributional bias in data, and opaque compounding effects of
data quality to downstream tasks.

Generally taken as the first module of DMD, data acquisi-
tion was tackled through diverse strategies in past works. To our
best knowledge, the most foundational, formal demonstration
of precomputed unit cell library for multiscale design was re-
ported in 2015.[34,35] Commonly pursuing digital design for 3D
printable elastic architectures, both conceptualized the notion of
microstructure families and exploited their interpolation to se-
cure decent coverage and distributional uniformity in the prop-
erty space of isotropic elastic constants. While sharing a simi-
lar end-goal, Panetta et al.[34] advocated for truss-like symmet-
ric structures endowed with explicit parameterization, whereas
Schumacher et al.[35] harnessed freeform microstructures, gener-
ated by TO. The work was followed by Zhu et al.,[82] where a more
advanced TO-based approach was proposed to iteratively expand
the property space of voxelated, freeform unit cells. Foundational
works involving data acquisition in plasmonic metasurfaces in-
clude Malkiel et al.,[83] where unit cells were synthesized based
on geometric primitives and operations, both of which were ex-
plicitly parameterized. Pursuing a large-scale shape dataset with
more geometric variability, Liu et al.[42] conceived pixelated unit
cells that were crafted from a group of selected canonical classes,
e.g., cross, bow-tie, V-shape, split ring resonator, using a variety
of operations, e.g., scaling, rotation, union. To support building
blocks with wide topological diversity, Whiting et al.[84] proposed
a representation based on high-dimensional embedding using
control points. Meanwhile, recent years have also seen efforts to-
ward method development dedicated to data acquisition of meta-
material unit cells beyond the widely used classic space-filling
sampling.[85,86]

Despite the diversity of strategies seen across different com-
munities, it is difficult to draw connections among them due to

the absence of attempts to build a common context that bridges
different strategies. To this end, we present a review of data ac-
quisition for DMD with a particular focus on the methodological
perspectives of prior works. We propose a standardized taxonomy
to organize the literature in a relatable and easy-to-compare man-
ner. Based on our observations of the current research trend, our
review of data acquisition consists of two parts: Shape-Centric
Data Generation Method (Section 3.2) and Property-Aware Data
Acquisition Strategy (Section 3.3). In the corpus, we recognize
that many demonstrations of data acquisition adopted shape gen-
eration heuristics, which do not necessarily consider property, in
order to incorporate domain knowledge into datasets and avoid
handcrafting a large number of shape instances one by one. Sec-
tion 3.2 offers a detailed review of these shape-centric data ac-
quisition methods. In contrast, Section 3.3 reviews acquisition
strategies that take property into account. These methods could
boost sampling efficiency and facilitate data customization for
specific design tasks.

Following the current research trend, the scope of this sec-
tion is centered on data acquisition, but we also briefly intro-
duce exemplar demonstrations of data assessment in Section 3.4
that is key to underpinning data quality assurance and data shar-
ing practice. Each subsection includes a discussion specific to its
topic, while Section 3.5 offers a more general and comprehensive
discussion that covers multiple themes in data acquisition.

3.2. Shape-Centric Data Generation Method

Data acquisition for DMD often entails a large collection of unit
cell shapes. Handcrafting individual shape instances one by one
is intractable for large data, as is running inverse optimization
to obtain all unit cells corresponding to a massive set of pre-
specified target properties. To create large data in an effective, sys-
tematic manner, past works presented a diverse array of method-
ological procedures. We recognize that individual approaches
commonly involve two research questions in shape generation:
1) How to specify a group of unit cells? and 2) How to grow
sparse data to large data? Answering the first essentially entails
a representation of unit cells (Section 3.2.1), which was usu-
ally preselected at the early stages of data acquisition and of-
ten justified based on criteria such as domain knowledge and
fabrication methods. On the other hand, answering the second
question involves the reproduction of unit cells (Section 3.2.2),
which facilitates the collection of a large enough dataset from
sparse data without both handcrafting and optimizing a large vol-
ume of individual samples. We remark that in literature the two
questions were addressed primarily based on generation strate-
gies driven by shape rather than property; we call these types
of approaches shape-centric generation methods. Given this tax-
onomy, we can bridge diverse data generation approaches scat-
tered over different communities in order to offer a comparative
review.

3.2.1. Representation of Unit Cells

A representation refers to a set of parameters, or models,
used to directly characterize unit cells, typically by projecting
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Figure 2. Representations of building blocks. a) and b): Parametric Multiclass. a) The mixed-variable multiclass lattice representation of mechanical
metamaterials. Reproduced with permission.[87] Copyright 2021, ASME. b) The parametric representation of 3D multiclass building blocks of mechanical
metamaterials. Reproduced with permission.[88] Copyright 2022, American Association for the Advancement of Science. c,d): Implicit Function. c) The
representation based on Triply Minimal Periodic Surfaces of mechanical metamaterials. Reproduced with permission.[89] Copyright 2019, ASME. d) The
spinodoid representation of mechanical metamaterials. Reproduced with permission.[90] Copyright 2020, Creative Commons CC BY. e,f): Pixel/Voxel. e)
3D voxelated representation of mechanical metamaterials. Reproduced with permission.[82] Copyright 2017, Association for Computing Machinery. f) 2D
pixelated representation. Reproduced with permission.[66] Copyright 2020, Elsevier B.V. g,h) Parametric Curve/Surface. g) The parametric surface repre-
sentation of photonic metasurfaces. Reproduced with permission.[84] Copyright 2020, Optica Publishing Group. h) The parametric curve representation
of photonic metasurfaces. Reproduced with permission.[40] Copyright 2018, AIP Publishing. i,j): Constructive Solid Geometry. i) The representation based
on primitive superposition and four-fold symmetry of dielectric metasurfaces. Reproduced with permission.[91] Copyright 2021, Wiley-VCH GmbH. j)
The union-based representation of plasmonic metasurfaces. Reproduced with permission under the terms of the Creative Commons Attribution 4.0
license.[83] Copyright 2018, the Authors. Springer Nature.

high-dimensional instances into a lower-dimensional space (Sec-
tion 2.1). Determining what representation to use, specifically
for the unit cells in this subsection, is a key decision that should
be made at the early stages of data acquisition, as it dictates the
nature of resulting data distributions.

Figure 2 depicts widely used representations reported to date,
organized based on our literature survey. The list might not be
exhaustive, but we believe that it provides a sufficient overview
of common practices in data generation. For each category, we

discuss the definition, hallmarks, and relevant works. A compar-
ative, multifaceted discussion across all the representations cov-
ered herein can be found in Section 3.2.3.

Parametric Multiclass: An intuitive way to encode domain
knowledge into a dataset is to directly include a set of geo-
metric classes (Section 2.1) intensely studied in the literature.
Herein, the seed classes are expected to serve as “pivots” of the
shape generation. Each class is typically endowed with some low-
dimensional explicit parameterization, e.g., the length/thickness

Adv. Mater. 2024, 36, 2305254 2305254 (6 of 45) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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of a bar entity,[41,80,87,92,93] volume fraction,[87] angle between ge-
ometric entities,[94] or rotational angle,[88,93] which supports di-
rect design exploration either within a class[87,88,94] or across
classes.[93]

In literature, some advocated for a mixed-variable representa-
tion where qualitative (e.g., building block type) and quantitative
(e.g., scaling factor) variables were used together as an explicit
multiclass representation for TO (Figure 2b).[95] Conceptual gen-
eralization was proposed by Liu et al., showcased by lattice-like
building blocks, spinodal pattern-like ones, and multimaterial
composites (Figure 2a), each of which involved an explicit, mixed-
variable representation with ensured compatibility.[88] Mean-
while, others conceived a versatile parametric representation able
to generate multiple classes without explicitly defining classes.[96]

To avoid geometric frustration when assembling building blocks
in the multiscale design of mechanical metamaterials, the com-
patibility among neighboring unit cells based on geometric
and/or mechanical factors often served as a primary criterion for
choosing classes.[87,88,96,97]

Implicit Function: It has been widely adopted to represent
unit cells using implicit functions that can generate geomet-
ric families. Therein, a shape instance is implicitly represented
through a surface function.

Demonstrations in literature have been centered on functions
that enjoy smooth topological variations, as opposed to lattice rep-
resentations, and which are tunable by a small number of param-
eters. The most widely used families in DMD are Triply Periodic
Minimal Surfaces (TPMS) that feature zero mean curvature and
large surface areas (Figure 2c).[63,89] Another isosurface represen-
tation based on linear combinations of analytical crystallographic
symmetry functions was implemented by Chan et al.[85] Bodda-
pati et al. proposed another representation that can synthesize
diverse classes of quasi-free unit cells of mechanical metamateri-
als by a linear superposition of periodic cosine functions.[98] In-
spired by the phase separation process described by the Cahn-
Hilliard equation, Kumar et al.[90] reported a spinodoid represen-
tation (Figure 2d), which features smooth, aperiodic variations of
complex topologies and tunable anisotropy.

A variant under this branch harnesses spectral decomposition.
A manifestation of this for photonic metasurfaces was shown by
Liu et al.,[99] where Fourier transform and level-set function of
shapes served as key pillars for the new representation. The spec-
tral representation enjoys topologically rich unit cells, reconstruc-
tion capability supported by inverse Fourier Transform, and effi-
cient symmetry handling. Another example in this line was used
by Wang et al.,[62] where the Laplace–Beltrami operation was em-
ployed for dimension reduction of the freeform unit cells.

Pixel/Voxel: Pixel/voxel representation builds on the as-
sumption that any shape instance can be viewed as a spatial ag-
gregate of solid/void elements. They are typically freeform. Dis-
tinct from other representations, this approach offers a direct
connection with inverse TO.

As an early demonstration in DMD, Zhu et al. employed the
voxelated representation with TO (Figure 2e).[82] Wang et al. im-
plemented inverse TO to find hundreds of freeform unit cells
to start with, each of which closely matches the target effective
property specified a priori (Figure 2f).[62,66] Li et al. used multi-
material TO to systemically construct a library of freeform unit
cells, each of whose response was programmed to exhibit a pre-

scribed target force-displacement behavior.[100] TO was also used
for a thermal emitter design that aims for frequency selective re-
flectivity when generating seed instances.[101] Harnessing inter-
pretable ML for band gap engineering, Chen et al. adopted the 2D
pixel representation to generate unit cell templates of phononic
metasurfaces.[102]

In the literature, we also observe another subcategory that
advocated the pixel-/voxelated representation while considering
user-defined classes. For the design of photonic metasurfaces,
many built datasets spanning from a group of canonical classes,
or meta-atoms, such as a cross, bow-tie, V-shape, I-beam, split
ring resonator, and others.[64,75,92,103,104] This allows one to en-
code the data generation procedure with domain knowledge in
contrast to the optimization-based pixel representation intro-
duced above.

Parametric Curve/Surface: Boundary-based representations,
also referred to as contour-based shape descriptors,[105] have been
commonly used to describe shapes as well. In these approaches,
a shape is represented by an ordered sequence of control points
on curves or surfaces.

Within DMD, this approach has been primarily favored in the
design of wave-based metamaterials that pursue design explo-
ration beyond canonical families. For metagrating design, Inam-
pudi et al. employed a boundary representation that specified
shape instances with 16 boundary control points (Figure 2h).[40]

Li et al. used the four-order formulation of trigonometric func-
tions with tunable parameters to explicitly represent a boundary
curve of scattering inclusions of phononic crystals.[43] Tanriover
et al. also harnessed such a representation to construct a shape
dataset not restricted to the canonical meta-atoms in the liter-
ature under curvature constraints.[106] As an extension, it was
also shown that a higher dimensional embedding of paramet-
ric curves/surfaces can be used as an implicit representation of
2D boundaries. For example, in photonic metasurfaces, Whit-
ing et al. conceived a representation that offers topologically di-
verse instances in order to generate quasi-free building blocks
(Figure 2g).[84] A key distinction between this and the Implicit
Function method above is that the 3D embedding here is fully
governed by control points, which are explicitly defined. As an
example in mechanical metamaterials, Wang et al. adopted the
Cassini oval curve to represent the proposed auxetic planar meta-
surfaces with oval holes.[107]

Constructive Solid Geometry: Constructive Solid Geometry
(CSG) is a geometric modeling method to create a solid ob-
ject in a syntactic manner.[108] Its underlying concept is to com-
pose an instance by following a sequence of set-theoretic oper-
ations (e.g., union; intersection) acting on primitives (e.g., rect-
angle, cylinder, sphere). The semantic nature makes instances
of CSG highly interpretable, and offers a seamless connection
with Computer-Aided Design. Capitalizing on explicit parame-
terization, a similar approach, the so-called moving morphable
components,[109,110] has been developed in the TO community.

Within the context of DMD, CSG has been utilized in some
works, in particular for the design of photonic metasurfaces.
Malkiel et al.[83] applied the primitive rectangle, whose presence,
length, and angle were parameterized, along with the union op-
eration to synthesize plasmonic nanostructures (Figure 2j). A re-
cent work that builds on further design freedom was reported
by An et al.,[91,92] where a heuristic shape composition strategy,
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Figure 3. Reproduction strategies applied to sparse data to generate large data. White arrows indicate the direction from existing shapes to new ones.
a) Parametric Sweep applied to Wang et al., where six lattice classes were explored by varying their volume fraction. Reproduced with permission.[87]

Copyright 2021, ASME. b) Multiclass Blending employed in Chan et al. where the unit cells at the leftmost and rightmost columns serve as seed classes.
The proposed class remixing generates inter-class instances with ensured connectivity. Reproduced with permission.[65] Copyright 2022, Springer-Verlag
GmbH Germany. c) Perturbation implemented in Wang et al., where radial distortion was harnessed as the perturbation method to recursively expand
the coverage in property space while preserving the topology as well as axial symmetry. Reproduced with permission.[86] Copyright 2023,ASME.

named as the needle-drop approach by the authors, was em-
ployed to produce a large volume of quasi-freeform unit cells as
unions of rectangle primitives (Figure 2i).

3.2.2. Reproduction from Sparse Data to Large Data

Once a representation is determined, a typical next step that fol-
lows is to use it to grow a large-scale shape collection, with an
optional target dataset size. We will call this task reproduction
throughout this review. A reproduction strategy dictates the way
of producing generic instances in a shape set and the distribu-
tional nature of resulting data, thus significantly affecting the
quality of downstream tasks of DMD. Through effective repro-
duction, DMD can enjoy a quality dataset that represents the
property distribution with space-filling samples and wide cover-
age. Based on our survey, we observe three primary lines of repro-
duction methods: i) Parametric Sweep, ii) Multiclass Blending,
and iii) Perturbation. Figure 3 illustrates each with an example
in literature.

Parametric Sweep: Given a representation of unit cells that
spans a descriptor space with low/moderate dimensionality, Para-
metric Sweep is often applied to explore the descriptor space as
uniformly as possible with a finite number of samples. Space-
filling sampling that is effective in low-dimensional spaces has
been intensely studied for a long time. Readers interested in the
topic are referred to reviews.[111,112]

We observe that, perhaps not surprisingly, Parametric Sweep is
the most widely-used reproduction strategy.[40,63,80,87,88,90,92–94,113]

It has been combined with diverse types of unit cell repre-
sentations, especially low-dimensional ones such as the mixed-
variable lattice representation (Figure 3a),[95] the six-bar lat-
tice representation,[96] the H-shape meta-atom parameterized
with six variables,[92] the CSG-based representation,[91] and the
pixel/voxel dataset with canonical classes,[103] to mention a few.

Despite its wide use, three key drawbacks are that i) the ap-
proaches offer little design freedom, as the sweep takes place only
within a selected pivot class and hence cannot bridge multiple
unit cell classes; ii) as the dimensionality gets larger, the den-
sity of space-filing sampling drastically drops due to “the curse
of dimensionality”[114]; iii) sampling only in shape space, even
if done well, typically leads to huge bias in property space (dis-
cussed in detail in Section 3.4.3).

Multiclass Blending: Blending, or interpolating, across classes
offers an avenue to grow a large shape library from a few initial
seed classes. This approach differs from Parametric Sweep in that
multiple classes jointly contribute to a new instance. Hence, this
line of reproduction approaches could be powerful for merging
different classes into a unified landscape that includes unseen
inter-class instances.

In DMD, some works addressing photonic metasurfaces also
utilized image transformations based on Boolean operations (i.e.,
union, intersection, complement) among canonical classes (e.g.,
cross, split ring resonator, I-beam) to synthesize freeform inter-
class instances.[64,75] In the corpus, such class blending for DMD
is often followed by deep generative modeling,[69,72] which distills
a continuous shape manifold of multiclass unit cells.[63,64,75] For
a recent method developed in this branch, Chan et al. proposed
a versatile Multiclass Blending scheme for functionally graded
structures.[61,65] The entire scheme combines a weighted sum
of seed classes and an activated soft union with lower feasible
bounds. This enables the method to be directly integrated into
multiscale TO with assurances on both structural integrity (i.e.,
connectivity within a unit cell) and feasibility (i.e., connectivity
among neighbors) simultaneously, while avoiding the restriction
of the unit cell to predefined shapes (Figure 3b).

While feasible blending operations are not tied only to set-
theoretic Boolean operations (e.g., union, complement), relevant
works seem to have reported either simple unions[63] or their
variants.[65] For implementation one needs to specify i) the type
of operations (e.g., union; intersection); ii) the number of classes;
and iii) rules for weighting factors. We point out that either jus-
tifications or analyses on the impact of the choices have been
rarely reported in the literature, with a possible exception of Chan
et al.[65]

Perturbation: Perturbation-based reproduction utilizes
heuristics that also allow data expansion. The core idea is to
1) either look up near-boundary or on-boundary instances in
the property space of a given dataset at the current iteration, 2)
apply geometric perturbations on them in the ambient shape
space, often beyond the given representation space, and 3) iterate
the perturbation to drive the data acquisition for on-demand
purposes (e.g., coverage expansion).

An example of this approach is the iterative database expan-
sion proposed by Wang et al.,[62,66] where the radial distortion
was recursively applied to sampled freeform building blocks for
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progressive growth of the property coverage. This reproduction
strategy enables extensible data acquisition, which can possibly
go beyond user-defined seed instances and unit cell representa-
tion, contrary to the two aforementioned strategies. At the heart of
its implementation are sampling strategies that enable efficient,
property-aware exploration of the shape space.[62,82]

Perturbation has been mostly applied to the Pixel/Voxel rep-
resentations; yet it could be even more effective for other lower-
dimensional representations, e.g., a lattice representation using
the Parametric Multiclass method (Section 3.2.1), to explore new
instances beyond them, as depicted in Figure 3c.

3.2.3. Perspectives on Shape Generation

Hinged on the taxonomy presented, we relate individual repre-
sentations and reproduction strategies, and share our perspec-
tives in multiple aspects.

Shape Dataset as a Design Element: It is generally affordable
to produce a bounty of unit cell shapes for DMD without obtain-
ing their properties. Nevertheless, the shape collection needs to
be judiciously prepared since i) it primarily determines the land-
scape to be explored by the downstream tasks; and ii) its utility
(which we delineate later in Section 3.4) is related to the resulting
property distribution, which is, in general, initially unknown and
resource intensive to obtain. Thus, we argue shape data for DMD
is a critical design element.

A Trade-Off Between Dimensional Compactness and Expressivity:
Any representation is subject to the trade-off between dimen-
sional compactness and expressivity. For example, both the Para-
metric Multiclass and Implicit Function representations enjoy di-
mensional compactness. Combined with Parametric Sweep, per-
forming data generation with these is relatively straightforward.
However, design exploration could be restricted unless supported
by effective reproduction strategies. In contrast, the Pixel/Voxel
representation supports freeform topologies without restrictions;
yet in practice, the advantage comes with the challenges of: 1)
large computational overhead for both design evaluation and ma-
chine learning due to poor scalability with respect to the resolu-
tion, particularly in 3D metamaterials, as evidenced by coarse res-
olutions in the relevant literature; 2) efficient design exploration
in the vast space, possibly with constraints associated with desir-
able design attributes, such as manufacturability.[75,101] Paramet-
ric Curve/Surface allows for free boundary variations but suffers
from topological restriction. As another moderate-dimensional
representation, CSG offers topologically quasi-free instances, yet
its coverage of possible shapes highly depends on the shape gen-
eration heuristics that are agnostic to property; hence, it is prone
to distributional bias in property space. This property bias could
be a hurdle for a data-driven model to accurately learn and per-
form inference, and trigger the compounding effects of data qual-
ity issues in downstream tasks,[85,86] or, as it is known in the ML
community, “Data Cascade.”[115] Relevant works that attempted
to tackle the property bias are reviewed in Section 3.3.1.

Class-Centric vs Class-Free: Depending on the presence of
user-defined classes, the representations introduced above can
be divided into two groups: class-centric approaches that typi-
cally include predefined classes (such as Parametric Multiclass
and Implicit Function), and class-free (such as Pixel/Voxel, which

is generally the case). By pre-specifying seed classes, class-centric
approaches enjoy a database that can take advantage of desirable
features inherited from the user-defined unit cell templates, i.e.,
it can include domain expertise. However, resorting to a particu-
lar set of user-defined classes tends to restrict the design freedom
early in the procedure of DMD and bias the resulting data dis-
tribution in undesirable ways. A workaround applicable during
reproduction is to consider Multiclass Blending (Section 3.2.2)
introduced earlier, which offers seamless connection across seed
classes.[65]

Choosing Seed Classes: A crucial step for approaches un-
der the class-centric umbrella is to choose, and justify the
choice of, the classes with which to start. They can be chosen
based on attributes related to shapes (e.g., topological features,
mass/volume, smoothness, manufacturability) or their proper-
ties (e.g., elastic anisotropy, performance-to-mass ratio, broad-
band response). It is also important to ensure shape diversity
among the classes, since it secures broad coverage of shape space.
Last not but least, it has been pointed out that diversity in the
shapes of unit cell data barely contributes to property diversity or
task-awareness.[85,86] When wider coverage and better uniformity
are sought, property diversity, in addition to shape diversity, could
serve as a selection criterion of seed classes.[87]

Inspiration-Based Data Acquisition: Natural materials that ex-
hibit outstanding properties supported by complicated struc-
tures evolved over a long time have been a great inspiration
for innovation in design-by-analogy.[116,117] Some works dedi-
cated to engineering metamaterials have espoused motifs from
biosystems.[118–121] Although biologically inspired design pro-
vides a compelling avenue to concept generation, relevant works
seem to mainly focus on proof-of-concept demonstrations with
little design exploration due to grand design challenges such
as scalability and repeatability.[122,123] We believe that DMD can
tackle the challenges by marrying the inspiration from bio-
systems and data-driven exploration, especially in combination
with effective reproduction strategies (Section 3.2.2).

Deterministic vs Stochastic: To date, most datasets prepared
for multiscale architectural systems were created based on deter-
ministic representations. On the other hand, a huge line of work
addresses multiscale systems whose microstructures are either
intrinsically random or subject to irreducible uncertainties asso-
ciated with system deployment, e.g., material, operating condi-
tions, and fabrications. Such scenarios can be better addressed
via stochastic representations. Examples in the literature include
the spectral density function approach[124,125] proposed for quasi-
random nanophotonic structures and photovoltaic cells, and the
spinodoid representation,[90] which was claimed to be more ro-
bust to fabrication imperfection compared to deterministic coun-
terparts. We believe that a comparative study between determin-
istic and stochastic representations is yet to be explored. Relevant
discussion with more focus on the trustworthiness of DMD can
be found in Section 4.4.2.

Handling of On-Demand Attributes: In choosing a repre-
sentation, the capability of handling desirable attributes could
be decisive. Attributes of potential concern in DMD include
symmetry, periodicity, invariance, volume constraint, manufac-
turability, connectivity among unit cells, and others. In gen-
eral, the handling of those attributes is easier for explicit, low-
dimensional representations, namely the Parametric Multiclass,
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Implicit Function, and CSG types under the proposed taxonomy.
On the other hand, the Pixel/Voxel representations tend to need
special techniques to enforce those attributes, typically with the
aid of constraints[62,82,106] or data augmentation.[101,106]

3.3. Property-Aware Data Acquisition Strategy

Once a shape collection is prepared, design evaluation of
all or some of the individual shapes usually follows in or-
der to build training data for semi-/supervised learning (Sec-
tion 2.2). In literature, the exhaustive evaluation of a large
amount of data has been widely employed by means of space-
filling sampling, such as Latin hypercube sampling.[126] Exam-
ples in DMD include the 6D lattice representation,[93] the mixed-
variable multiclass representation,[87] and the Fourier transform
based representation.[99] It has been widely used in a paramet-
ric space associated with reproduction (Section 3.2.2) as well,
such as for exploration of the weight space of some isosurface
representations.[63,85] The popular use of space-filing design is
perhaps attributable to its simplicity and generality of implemen-
tation.

However, exhaustive sampling could become intractable when
i) the relevant simulation is time-consuming (e.g., high resolu-
tion; 3D simulation), ii) the on-demand data size is too large (e.g.,
more than 100k[66]), or iii) the sampling space is too high dimen-
sional (e.g., more than 50D). It could also be the case that one
wishes to acquire a data distribution with particular characteris-
tics related to downstream tasks (e.g., negative Poisson’s ratio or
strong elastic anisotropy). Under such scenarios, it is warranted
to exploit the acquisition strategies that take (estimated) property
into account as a complement to the aforementioned shape gen-
eration heuristics (Section 3.2). Compared to a plethora of works
on sampling in the small data regime, not many methods dedi-
cated to DMD with large data have been reported. We introduce
some within the context of data acquisition for DMD.

3.3.1. Sequential Acquisition with Active Learning

Active learning[127–130] refers to ML approaches that iteratively
guide the locations of the next samples. In DMD, it is common
to obtain a large pool of shape instances, but have labels for none
or only a small portion of it. Under such a case, active learning of-
fers a systematic, efficient, and general route to acquire evaluated
samples, and thus could help prepare on-demand data.

In DMD literature, a few works specifically harnessed sequen-
tial, heuristic sampling as part of their data acquisition. In an
early demonstration, Zhu et al. used a sequential sampling score
that aims at property boundary expansion through randomly flip-
ping voxels of near-boundary instances.[82] The estimated data
density and distance to the boundary were two key criteria that
constitute the sampling score. Inspired by that work, Wang et al.
developed an iterative stochastic data expansion scheme that
builds on a sampling rule accommodating both infilling and
gamut growth in the property space.[62]

With the aim to develop a method that is widely applicable to
data acquisition in DMD, Lee et al. proposed a diversity-based
active learning framework specialized in customizing metama-
terial datasets with respect to design tasks (Figure 4d,e).[86] As

opposed to one-shot sampling where the whole samples are col-
lected in a single iteration, sequential data acquisition powered by
active learning uses metrics to monitor the growth of a dataset,
thus offering a potential answer to a pressing research question
in DMD: “How much data?”.[86] In addition to progressive dataset
generation, active learning can serve as a key component for
other tasks of data management, such as domain adaptation[131]

and bias mitigation. An example was shown by Zhang et al.,[132]

where the proposed entropy-based active learning was demon-
strated to substantially reduce the structure-stability bias of two
public crystal datasets (Figure 4a–c).

3.3.2. Downsampling Representative Subsets

All our discussion above can be summarized as how to grow a
sparse, existing dataset into a large one. Some downstream tasks
of data acquisition, however, do not always benefit from using
an entire, massive dataset. A prevalent issue of large datasets in
DMD is distributional biases. They typically present as contain-
ing more of certain shapes or properties, typically in undesirable
ways, hosting the issue known as “learning under data imbal-
ance” during the downstream tasks.[134] To this end, Chan et al.
proposed a diversity-based subset selection framework built on
Determinantal Point Processes,[135] a probabilistic way of model-
ing diversity in relation to the determinant of a similarity matrix.
The key idea is to find small yet representative subsets, whose di-
versity in terms of shape, property, or a joint of them is tunable.[85]

Such downsampling could also be useful for training the mod-
els that do not scale gracefully to large datasets, such as vanilla
GPs[136] that scale cubically with respect to data size for train-
ing and inference. When large databases (e.g., more than 20k)
are to be used as a ground set of downsampling based on pair-
wise metrics, e.g., diversity based on Euclidean distance, scala-
bility of the downsampling algorithms becomes critical. It is of-
ten resolved through special schemes related to large-scale ker-
nel learning.[137–139] Lastly, downsampling can be harnessed for
determining a set of initial shapes to serve as seeds during shape
generation, as shown by Chan et al., who leveraged Multiclass
Blending (Section Multiclass Blending) as their data reproduc-
tion strategy.[65]

3.3.3. Perspectives on Acquisition Strategy

Sequential Acquisition for Generic Use: Uncertainty vs Diversity:
Sequential acquisition can be thought of as designing the rules
with which to query an existing pool of unlabeled data, which, in
our review, is typically a large number of unit cells with unknown
properties. Here, we discuss and compare two key approaches
to acquisition for DMD: uncertainty-based sampling,[140,141] and
diversity-based sampling.[65,85,86,132] Uncertainty-based sampling
is centered on improving the prediction confidence of a model,
typically resulting in a distributional imbalance that poorly rep-
resents the distribution of unlabeled data. Meanwhile, diversity-
based sampling focuses on identifying a finite number of land-
mark data points to combat the distributional bias. Practical im-
plementation of either approach entails deciding the input di-
mensionality of data and the computational cost of the sam-
pling algorithms.
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Figure 4. Data acquisition for DMD through active learning. a–c) Entropy-based active learning[132] demonstrated by the J-CFID dataset.[133] The dataset
includes 10 898 instances with seven types of crystal symmetries. a) Kernel density estimation plot of t-distributed stochastic embeddings (t-SNE), where
regions with light colors are covered by sparse data. b,c) t-SNE plots of graph embeddings of the materials selected by entropy-based active learning
and random sampling, respectively. The proposed entropy-based active learning better covers the sparse regions, hence mitigating bias in the multiclass
crystal dataset. Reproduced with permission.[132] Copyright 2023, AIP Publishing. d,e) Task-aware diversity-based active learning demonstrated by pur-
posefully preferring data with strong anisotropic elasticity.[86] The test dataset includes 88,180 instances of freeform pixelated unit cells of orthotropic
mechanical metamaterials.[62] The resulting property distributions of 3k datapoints in the C11-C22 space obtained by random sampling and the proposed
task-aware active learning, respectively. Reproduced with permission.[86] Copyright 2023, ASME.

Uncertainty is typically formulated as a model-specific, point-
wise function that takes a query point as the input. Includ-
ing uncertainty within sampling is effective for directly improv-
ing the predictive performance of models, whereas the com-
putational complexity escalates as the input dimensionality in-
creases. Within DMD, acquisition methods utilizing uncertainty
could be useful when fitting ML models that offer uncertainty
quantification, e.g., GPs or Bayesian linear regression, with
a low-dimensional representation relative to a large number
of data (say > (104)). In general, uncertainty-based acquisi-
tion can be conducted based on either frequentist approaches,
e.g., random forests and deep neural networks, or Bayesian ap-
proaches, e.g., GPs and generalized linear models. For practi-
cal guidance on which to employ, readers are referred to Zhang
et al.[141]

Meanwhile, diversity is frequently modeled as a pair-wise,
model-agnostic metric that involves a mapping from a pair of
instances to a scalar similarity.[135] By harnessing the pair-wise
kernel trick, the diversity-based acquisition is capable of handling
high-dimensional input instances. However, the acquisition does
not gracefully scale with respect to data size due to large storage
requirement ((N2) where N is the data size) and matrix inver-
sions that involve time complexity of(N3) unless any large-scale
kernel approximations[137,139] are employed.

Tailoring Property Distributions: Data acquisition methods
that are agnostic to property can lead to datasets that are prone
to property bias. For example, Figure 5a,b shows the highly bi-
ased distributions of formation energy in public crystal datasets.
A plethora of sampling methods in low-dimensional input do-
mains have secured datasets with decent coverage as well as
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Figure 5. Illustration on distributional bias in the property space of existing DMD datasets. a,b) Stability distributions of two different crystal datasets,
2,953-size OQMD-8[146] and 10,898-size CFID,[133] whose instances are categorized based on symmetry. Reproduced with permission.[132] Copyright
2023, AIP Publishing. c–e) Visualization of the six-bar parametric lattice dataset.[86,93] c) Conceptual illustration of the unit cell shape generation based on
Parametric Multiclass. d) The near-uniform space-filling design in the projected w1-w2 shape descriptor space. e) The resulting property distribution in the
C11-C13 space. The near uniformity in the weight space leads to a strong bias in the C11-C13 space. f,g) The near-zero correlation between shape diversity
and property diversity observed during downsampling of the isosurface dataset and active learning applied to the orthotropic freeform dataset,[62,86]

respectively. f) Reproduced with permission.[85] Copyright 2020, ASME. g) Reproduced with permission.[86] Copyright 2023, ASME.

uniformity.[111,142–145] The quality in the input domain, however,
has been found to barely transfer to that in the output domain.
Figure 5c–e shows such an example in a mechanical metama-
terial dataset. Within DMD literature, this point was observed
through the near-zero correlation between shape diversity and
property diversity depicted in Figure 5f during downsampling
and in Figure 5g under active learning.[85,86] The implication is
that property distributions are likely to be highly imbalanced even
though the design in shape space is space-filling, a problem that
is currently overlooked in DMD.

Furthermore, for design purposes, addressing property im-
balance is only part of data quality assurance. Not all data are
equally useful because users frequently have certain preferences
in terms of shape, property, or both. For example, a user might
wish to collect unit cells of mechanical metamaterials with nega-
tive Poisson’s ratios, with packaging or shock absorption applica-
tions in mind. During data acquisition of photonic metasurfaces,
broadband reflectivity might be preferred over narrowband for
some defense applications. Therefore, data acquisition for DMD

should, ideally, be task-aware so that more resources can be in-
vested in the region of central interest. Figure 4d,e illustrates a
methodology where batch sequential data acquisition is encour-
aged to favor samples with high elastic anisotropy.

It is difficult to tailor the property distribution during data
acquisition without supervising the properties of interest. This
supervision is non-trivial in that 1) properties of unseen unit
cells are unknown before evaluation; 2) the evaluation is typ-
ically resource-intensive, particularly for large datasets; and
3) distributional control in regression tasks is more chal-
lenging and has been under-explored compared to that in
classification.[134] We believe this topic calls for more research
attention.

3.4. Data Assessment

Data assessment in DMD entails quality quantification across
candidate sets with respect to either general use or specific
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design tasks. Large sizes of data render the close inspection
of individual samples intractable. Thus, their assessment is
often conducted through proxy measures such as a quantitative
summary of distributional characteristics, or through data visual-
ization for qualitative interpretation. Subjectivity perhaps cannot
be totally excluded in data assessment, particularly for DMD
applications that involve multiple assessment criteria, e.g., data
size, distributional uniformity of data, property coverage, target
design tasks, and manufacturability of unit cells. Nevertheless,
protocols could help to compare datasets and make decisions on
which set is best suited for the intended goal.

Below, we share feasible ideas and scenarios for data assess-
ment that have been drawn from our survey of a large volume
of existing metamaterial datasets, and a sparse number of exem-
plar quantitative/qualitative assessment methods. As reviewers,
we hope our discussion will contribute to the establishment of
assessment protocols on metamaterial datasets.

3.4.1. Quantitative Assessment with Metrics

Space-Filling Metrics: In general, data acquisition aims to
make the data distribution as uniform as possible to ensure any
local region of potential interest is equally covered by the dataset.
In doing so, some works in DMD employed sequential sam-
pling that included the density, or concentration, of data in cer-
tain regions of the design space as part of the sampling util-
ity function.[62,66,82] The density in these works was not used to
assess dataset quality, but can possibly be used to do so.[86] As
an alternative to point-wise density, the alternative of set-wise
diversity, or pairwise dissimilarity,[135] can also serve as a sam-
pling criterion to suppress distributional biases in both shape
and property space, as shown in some DMD works.[65,85,86] Point-
wise diversity can be measured through information entropy.[147]

A recent demonstration in literature was performed by Zhang
et al.,[132] where the coverage imbalance of formation energy
across seven crystal systems within the dataset was quanti-
fied through point-wise entropy and mitigated by the proposed
entropy-based active learning (see Figure 5a,b).

Task-Related Metrics: In DMD, a dataset often ends up be-
ing used for a particular design scenario. In such cases, distri-
butional metrics alone may not ensure the on-demand deploy-
ment of DMD. Even with a dataset that exhibits perfect unifor-
mity, it could be the case that the region associated with a given
design task (e.g., high performance-to-mass ratio, high stiffness
anisotropy, broadband reflectivity) happens to be covered by only
a few, or even none, of the datapoints. This implies that, if de-
sign tasks of interest are given, the assessment on a given dataset
must vary. The task specificity of data assessment indicates that
if a new task is given, data assessment must realign according to
it. In a relevant work, Lee et al. specified a couple of design sce-
narios involving different design tasks given a shape-only dataset
and showed that the resulting property distribution for each case
can be tailored through diversity-driven active learning.[86]

Within-Dataset Assessment: In case multiple metamaterial
datasets share the same input space, i.e., the representation space
of building blocks, the quality of each can be comparatively mea-
sured based on metrics. Such comparisons could be useful for
assessing across multiple data acquisition methods.

For example, Chan et al.[85] validated the proposed diversity-
driven subset selection method for the isosurface representation
by showing larger shape diversity of subsets against that of ran-
dom, independent sampling. Assuming a similar setting but with
more focus on sequential acquisition, Lee et al.[86] conceived a
measure of diversity gain, which quantifies a relative ratio be-
tween the diversity of selected subsets and that of independent
and identically distributed (i.i.d.) samples with the same data
size, to quantify the increase of shape diversity enabled by the
proposed sequential sampling strategy. The authors also demon-
strated better task-awareness in the two representation spaces,
both of which were latent spaces distilled by training genera-
tive models.

3.4.2. Qualitative Assessment Through Visualization

Property Coverage: Property coverage offers an intuitive, rela-
tive criterion to comparatively gauge utility across datasets, sim-
ilar to how the Ashby chart visualizes a modulus-density space
for disparate materials.[148] Upon valid normalization across
datasets, data assessment in property space is usually less sub-
jective compared to that in shape space due to lower dimen-
sionality. Intuitive examples in the literature include elastic-
ity components,[62,93,149] transmission-phase delay at a single
frequency,[91] and formation energy of crystal structures.[132]

Figure 6 shows an example of a visual comparison between
two datasets in a low-dimensional property space. Both carry 3D
mechanical metamaterial instances under linear elasticity. Con-
sidering the geometrical symmetry, we only consider three com-
ponents, Young’s modulus (E), Poisson’s ratio (𝜈), and volume
fraction (vf). The red one denotes the 924-size TPMS dataset gen-
erated by Wang et al.[63] using Implicit Function and Parametric
Sweep. The yellow one denotes the 21 684-size multiclass lattice
dataset presented by Chan et al.,[61] created with Parametric Mul-
ticlass and Multiclass Blending. The pairwise plots of projected
properties in Figure 6b shed light on some insightful informa-
tion in a comparative sense including: i) Overall, the multiclass
dataset has better data uniformity in terms of Young’s modulus
(E) and volume fraction (vf); ii) In the E − 𝜈 space, the TPMS
dataset has some regions that are covered only by sparse data,
arguably attributed to the limitation of Parametric Sweep with a
few classes; iii) Although the data size of the multiclass dataset
is more than 20 times larger, some property values in the E − vf
space are only available in the TPMS dataset.

In the case where the dimensionality of property is high-
dimensional, e.g., optical spectra of transmission, dimensional
reductions are necessary to visualize the data preferably in 2D
space. Zandehshahvar et al.[151] shows such an example built on
an autoencoder, where the latent space of optical spectra 1) visu-
alizes the coverage dependent on the design complexity of unit
cells (Figure 7d,e) and 2) automatically encodes the shift of reso-
nance frequency along the circumferential directions (Figure 7f).

Shape Manifolds: The distribution of data in shape space
could give another insight into data assessment in DMD. De-
spite high dimensionality, ranging from several (e.g., Parametric
Multiclass) to millions (e.g., Pixel/Voxel), there is an array of di-
mension reduction schemes developed for exploratory data analy-
sis, such as principal component analysis (PCA),[152] t-distributed
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Figure 6. An example visual comparison between two 3D mechanical metamaterial datasets. a) Examples of unit cells in the 924-size TPMS dataset.[63]

(red, top) and the 21 684-size multiclass lattice dataset.[61] (yellow, bottom). b) Pairwise plots of the properties of interest: Young’s modulus (E), Poisson’s
ratio (𝜈), and volume fraction (vf). The effective properties are computed by energy-based homogenization.[150] The plots located at the diagonal depict
a histogram of each component. All the off-diagonal components show scatter plots of two different properties. The upper triangle plots are shown
considering the symmetry. The volume fraction ranges from 0.25 to 0.8.

stochastic neighbor embedding (t-SNE),[153] and uniform mani-
fold approximation and projection (UMAP).[155] The projection
is conducted preferably into 2D spaces for straightforward visu-
alization. This can uncover the underlying characteristics of the
data distribution, e.g., clusters formed by data acquisition, often
dictated by reproduction strategies of unit cells (Section 3.2.2).

For example, in DMD, Ma et al.[76] employed a VAE[69] and then
visualized the latent space using t-SNE. The visualization pro-
jected in a 2D space reveals the clustering across the seed eight
classes learned in an unsupervised manner (Figure 7). Mean-
while, Wang et al.[66] employed PCA to claim the versatility of
the proposed latent representation learned by a conditional VAE.
The visualization was used to delineate that the continuous, in-
terpretable latent space offers simple interpolation across build-
ing blocks, a shape similarity measure, and intrinsic clustering
of associated properties.

An even more interesting use of such high-dimensional data
visualization is for comparisons across datasets. Employing the

one-class support vector machine,[154] Zandehshahvar et al. visu-
ally demonstrated the impact of geometric freedom in building
blocks by visualizing different coverage in both shape and prop-
erty space (see Figure 7d–f for illustration).

3.4.3. Perspectives on Data Assessment

Task Specificity of Data Acquisition and Assessment: In Task-
Related Metrics under Section 3.4.1, we covered the task speci-
ficity of data assessment with a particular focus on metrics.
We now summarize our general view on data acquisition
and data assessment of DMD for commonplace scenarios as
follows:

a) Provided that no target tasks have been specified, data acqui-
sition can aim to create a dataset for generic use, i.e., focus on
uniformity and wide coverage, in both the shape and property
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Figure 7. Visualization of high-dimensional data. a) Visualization of the latent space in the orthotropic mechanical metamaterials dataset with the
property distributions included.[62] The 16D latent representation distilled by VAE is visualized in 2D space using principal component analysis.[152]

Reproduced with permission.[62] Copyright 2020, Elsevier B.V. b,c) Visualization of the latent space in plasmonic metasurfaces.[76] b) The representative
images of the seed classes included in the dataset. c) The resulting data distributions in the 2D latent space using t-distributed stochastic neigh-
bor embedding.[153] Each class forms separate clusters in the latent space, projected from 20D into 2D. Reproduced with permission.[76] Copyright
2020, Science China Press and Springer-Verlag GmbH Germany. d–f) The latent space representation of the resonant reflection spectra in dielectric
metasurfaces.[151] d) Metasurface unit cells with five different levels of geometric complexities. e) The corresponding convex hulls of shape mani-
folds estimated through the one-class support vector machine.[154] f) The corresponding property distribution of high-dimensional optical spectra in
the property manifold. It encodes the shift of resonance frequency with respect to the traversal along counter-/clockwise directions. Reproduced with
permission.[151] Copyright 2020, American Chemical Society.

spaces of building blocks. The data assessment can also fol-
low the same criteria without preferring a certain region in
those spaces. Ref. [85] shows an example in literature.

b) Even without being given any specific on-demand properties
a priori, instance-wise preferences related to shape (e.g., fabri-
cation feasibility), property (e.g., high physical anisotropy), or
both (e.g., performance-to-mass ratio) can be enforced during
data acquisition to tailor the data distribution as desired with
minimal trial-and-error. The data assessment approach must
address both distributional metrics and task-related metrics.
Ref. [86] is an example.

c) If a target downstream task is prespcified , or a set of tar-
get tasks is given, the data acquisition and assessment can
be aligned to the specified task(s), in addition to data unifor-
mity. In these cases, data uniformity is useful only within the
domains associated with the tasks. Moreover, the assessment
is subject to the definition of target tasks. A concrete design
example of mechanical metamaterial systems where the task

of matching target displacements at the system level is ad-
dressed in ref. [62] and discussed in Section 5.4.3.

Assessment Protocols: Data assessment is essential for either
diagnosing a dataset or choosing the best among competing
ones. How to fairly measure the quality of metamaterial datasets
is key to decision-making over competing datasets, as well as to
minimization of iterations among the modules of DMD. A gen-
eral guideline for the assessment of synthetic datasets for engi-
neering purposes was recently proposed.[156] However, not many
attempts that are dedicated to data assessment for DMD have
been reported, compared to the rapidly growing volume of the
corpus. Without agreement upon standard protocols of data as-
sessment, it is difficult to judge the quality of individual works
that include data acquisition and to draw meaningful conclusions
among them. Thus, we assert the need for more research efforts
centered on data assessment.
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Benchmark Datasets: The easy access to public datasets has
been an enabler of the recent surge of ML. Ideally, newly pro-
posed methods on any module of DMD should be validated
through diverse benchmark datasets that are suggested by the
communities. In the corpus of data-driven design, however, such
solid validation seems difficult to find. A profound reason that
applies to general data-driven design is, arguably, a dearth of
public datasets and benchmarks.[47,156,157] Echoing this, we ar-
gue that securing more public datasets and setting some of them
as benchmarks will be the first step towards the research prac-
tice that prompts quantitative, rigorous comparisons of relevant
works and reproducible research, hence helping readers better
appreciate individual works with relation to the field. In doing
so, it is highly encouraged to make new datasets publicly avail-
able, preferably in online repositories that support consolidation
across datasets.

3.5. Discussion

3.5.1. Limitations of Unit Cell Datasets

To date, most demonstrations of data-driven multiscale design
have been built on building block datasets. Each data point, typ-
ically a structure-property pair, is generated based on homoge-
nization under the assumptions that i) there is scale separation,
and ii) the system of interest is either deterministic under pe-
riodicity (e.g., crystal) or stochastic following the ergodic princi-
ple and therefore stochastically periodic (e.g., polycrystal; spin-
odoid systems[90]). The conditions imply that, in datasets of de-
terministic systems, the homogenized properties can be inaccu-
rate, possibly substantially, to describe the unit cell behaviors in
the multiscale systems. Nevertheless, some recent works, which
accelerated the design of fully aperiodic systems using the ho-
mogenized properties, have claimed that the accumulated errors
at the system level are acceptable under special conditions, e.g.,
when including geometric/mechanical compatibility under lin-
ear elasticity,[34,66] functional grading,[61,65] and uncoupled oper-
ations in photonic metasurfaces,[91] where the accumulated de-
viation of the homogenized properties at the system level was
claimed to be acceptable.

We point out that while the homogenization assumption
has been a backbone of the recent progress in DMD for both
periodic/non-periodic and deterministic/stochastic systems, it is
also a hurdle that impedes researchers from exploring problems
beyond academic benchmarks where the assumption does not
hold true. There are a variety of cases where the deviation of effec-
tive properties under periodic boundary conditions at the system
level is more than acceptable.[50] Examples include the systems
under: i) large deformation,[45,158] ii) strong local coupling among
neighbors,[159,160] iii) long-range interactions,[161,162] and iv) het-
erogeneous loading conditions.[140,163,164] Preparing the datasets
that take a supercell (i.e., a collection of neighboring unit cells)
instead of a single unit cell as a datapoint could offer a simple yet
powerful extension to the unit-cell-based approaches, as shown
by refs. [140, 160, 165]. The extension would involve increased
computational cost and validating the boundary conditions ap-
plied to the supercell simulations. A relevant discussion at the
system level can be found in Section 5.4.2.

3.5.2. Learning Global Responses vs Local Responses

Many works reported in DMD include a surrogate model that
directly maps the parameterized unit cells to effective, homog-
enized properties, such as elasticity components in mechani-
cal metamaterials[61–63,65] and scattering parameters in photonic
metasurfaces.[42,75,91] In general, the associated mapping that re-
turns a low dimensional output is expected to be learned within
an acceptable amount of error, provided that 1) there is a good
amount of training data to uncover the underlying pattern, 2)
the output dimensionality is low, and 3) the tuning parameters
of the model have been explored thoroughly enough. Neverthe-
less, this type of learning which targets global responses comes
at a significant loss of information available in simulations and
experiments, since the model has access only to high-level, typ-
ically condensed, quantities of specific interest, not to raw full-
field data.

A workaround that can boost the generality of the structure-
property mapping is to directly learn output physical fields, e.g.,
displacement, electric fields, and temperature, as a function of
parameterized unit cells. The goal can be achieved through ei-
ther physics-informed ML or operator learning,[166–170] where an
underlying physics is either explicitly imposed as a constraint or
discovered by field data. Such a mapping can capture underly-
ing spatial correlations of fields, which could be subject to strong
long-range interaction across unit cells in DMD. Within DMD,
an early demonstration of physics-informed ML was reported by
Fang et al.[171] in 2019. Chen et al.[172,173] further investigated the
potential of physics-informed ML for DMD under more challeng-
ing scenarios that include noise field data and high-index ma-
terial. Lim et al.[174] followed with a particular focus on model-
ing and inverse design of aspheric micro-lenses. Recent years
have seen growing interest in operator learning, the other major
branch, as well. In 2022, Lu et al.[175] proposed a multi-fidelity
neural operator for efficient sampling for modeling nanoscale
heat transport. Augenstein et al.[176] harnessed a Fourier Neu-
ral Operator for field-to-field modeling and inverse design of 3D
quasi-free scatters specified by the VAE latent representation. In
the meantime, Zhelyeznyakov et al.[159] employed dynamic mode
decomposition to predict the full near-field response of an elec-
tromagnetic metasurface array using a sparse representation.

These field-to-field modeling approaches feature decent model
transparency, generality, and sample efficiency. In practice, how-
ever, their implementation involves non-trivial challenges that
include 1) how to effectively regularize the learning with re-
gard to high-dimensional output fields (e.g., adding a sparsity
penalty to avoid overfitting[166]) and 2) how to impose priors asso-
ciated with physics (e.g., smoothness of fields[177]). The extrapo-
lation capability of field-to-field modeling has been an open re-
search question. Limiting the scope to operator learning, Zhu
et al.[178] shared some insightful discussions under two scenar-
ios for extrapolation, each of which assumes either governing
equations are known or sparse data in the extrapolation region
of interest is given.

Pursuing a more direct approach toward one-to-many inverse
design, some recent efforts have been dedicated to construct-
ing a spatiotemporal mapping from on-demand nonlinear prop-
erties to associated physical fields through denoising diffusion
models.[179,180] Examples include Vlassis et al.[181] and Bastek
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et al.,[182] where a probabilistic inverse map from a target nonlin-
ear stress-strain behavior (e.g., large deformation) to a full-field
response (e.g., stress fields in deformed configurations) is con-
structed to accelerate on-the-fly, one-to-many inverse design. To
date, the relevant reports seem sparse, particularly for such non-
linear cases where naively feeding undeformed configurations to
ML models may not suffice to capture the spatiotemporal causal
relation. We believe that there is room to place more attention on
both field-to-field modeling and property-to-structure modeling.
Details of this topic are reviewed in Section. 4.2.4.

3.5.3. Determining Data Size

In one form or another, “How much data?” has been a key re-
search question in data-driven approaches. Within the scope of
DMD, this question affects the following aspects: 1) model com-
plexity (e.g., neural networks vs GPs[136]), 2) unit cell represen-
tation (e.g., high-dimensional vs low-dimensional), and 3) sim-
ulation cost/fidelity, among others. Due to the multifaceted na-
ture of DMD problems, it is difficult to predict an “optimal” data
size a priori, especially via one-shot sampling. The data sizes re-
ported in the literature could be a good starting point, provided
that a new design task of interest shares some attributes, e.g.,
model complexity and unit cell representation, with those of the
reported works. Integrating active learning with data acquisition
(Section 3.3.1) can be a more rigorous, general approach to deter-
mining data size since it offers metrics related to either the data
themselves or model performance. Lee et al.[86] claimed that di-
versity metrics can be monitored to gauge the relative utility of
incoming data, hence serving as a proxy to determine data size
based on the gamut growth in property space. For generic scenar-
ios, a guideline on the size of engineering datasets was proposed
by Picard et al.[156]

In the corpus, we observe most prior efforts were hinged
upon large data. It is equally worth investigating in the small
data regime,[183] as doing so will help tackle design prob-
lems that involve expensive simulations and limited computa-
tional resources. This call resonates with data-centric artificial
intelligence,[184–186] an initiative that propels a paradigm shift of
data acquisition from “more data” to “better data.”[187]

3.5.4. Data Sharing Practice and Reusability

The surge of DMD has inspired the emergence of open-source
data-sharing platforms, such as NanoMine,[188–190] which pays
special attention to polymer nanocomposites. MetaMine, its sister
platform, currently stores 300k structure–property data of meta-
materials with a diverse array of unit cell representations. Build-
ing a common platform and knowledge representation presents
immense challenges. The endeavor will facilitate consolidating
datasets that were acquired independently, and therefore en-
hance the potential of DMD beyond what is achievable by an in-
dividual dataset.

A prerequisite to building a user-interactive data platform
that supports reusability and reproducibility is sharing proto-
cols. For example, the FAIR (Findability, Accessibility, Interop-
erability, and Reusability) principles[191] is a concise, domain-

independent, and thus generic, guide for data sharing. Exercis-
ing the FAIR principles is built upon core elements such as stan-
dardized vocabularies, ontologies, and data formats. Despite the
foundational role that such general guidelines have played in
existing data-sharing platforms, they tend to only specify broad
guidelines of data quality assessment at a high level, leaving
the needs of discipline-specific standards unaddressed.[192] For
DMD, the proper format of (meta)data could differ wildly across
different domains (e.g., nanocomposites vs mechanical/photonic
metamaterials). Even within a given domain, it could be dif-
ficult to define a set of commonly structured vocabularies or
knowledge representations that accommodate all datasets sub-
mitted by users. In this regard, we advocate for an extensible,
dynamic platform, which starts with initial vocabularies and
schema defined by humans, as showcased by Nanomine for poly-
mer nanocomposites,[190] and which is then allowed to evolve
without supervision as more data is ingested.

Despite the advent of such data-sharing platforms, we point
out that the current practice in data-driven multiscale archi-
tectural design typically starts with creating one’s own dataset,
rather than with existing ones; arguably, the practice is what has
led to “per-task” datasets involving a similar/equivalent end-use.
To avoid the trial-and-error and computational resources that data
creation from scratch demands, new works can be conducted
by either i) creating a versatile, high-quality dataset that can ad-
dress multiple, disparate design tasks, or ii) customizing a pub-
lic dataset with respect to new design tasks. We believe that the
reusability of datasets is by no means trivial to achieve, and thus
deserves further research attention.

3.5.5. Other Tasks Involving Data

So far we have primarily covered data acquisition. Other possible
tasks include data augmentation, data consolidation, bias reduc-
tion, problem/domain adaptation, and exploratory data analysis.
Each task plays a unique role that cannot be fully addressed by
data acquisition itself. For example, it is highly recommended to
perform data augmentation because 1) it increases the amount of
training data without further evaluations; 2) it helps an ML model
to be encoded with operational invariances, such as rotation, scal-
ing, translation; and 3) it tends to mitigate overfitting by serving
as a regularizer of model training. Within DMD the efficacy of
augmentation has been demonstrated in some works.[101,106] We
believe that further research on data-related tasks other than data
acquisition will underpin the future success of DMD by enhanc-
ing the generality, customizability, and reusability of data.

3.5.6. Public Resources

We share a link1 to an online webpage of public resources that
are associated with data-driven design.

4. Data-Driven Unit Cell Design of Metamaterials

In Section 3, we reviewed past works related to metamateri-
als data acquisition and discussed some challenges at the data

1 https://github.com/ideal-nu/Data-Driven-Design-for-Metamaterials-
and-Multiscale-Systems-Status-and-Opportunities
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acquisition stage. In this section, we introduce how past works
used data-driven methods to solve unit-cell-level metamaterials
design problems.

4.1. Overview

The advancement of ML has motivated researchers to seek data-
driven solutions to many real-world design challenges. These
challenges mainly originate from the following factors:

1) Analysis using physical experiments or high-fidelity simu-
lations usually requires high cost. For example, numerical
nanophotonic simulations can take hours or even days for
complex systems.[193]

2) Advanced fabrication technology (e.g., additive manufactur-
ing, micro/nanofabrication) enables high degrees of design
freedom, but exploring a high-dimensional design space to
find optimal solutions is challenging.

3) While methods, like adjoint-based shape optimization and
TO, can address high-dimensional design problems by using
sensitivities to guide optimization, sensitivities are usually ex-
pensive to numerically derive when the physics governing the
problem is non-differentiable with respect to design variables.

In this section, we will introduce how past work used data-
driven methods to solve these challenges, particularly in the
domain of unit-cell-level metamaterials design. Note that data-
driven methods have been gaining increasing attention in engi-
neering design, mainly for shape and topological designs, to ad-
dress the challenge brought by their high degrees of design free-
dom. For shape optimization, a large body of work looked at data-
driven aerodynamic shape optimization, which mainly focused
on dimensionality reduction or representation learning (e.g.,
Refs. [194–198]) and inverse design (e.g., Refs. [199–201]). Com-
pared to only considering shape variation in shape design, meta-
materials design can usually accommodate topological changes
depending on their functional requirements. These extra degrees
of freedom make it more difficult for traditional design meth-
ods to solve metamaterials design problems. Many works on ML-
assisted TO serve various purposes such as reparameterization,
objective function prediction, sensitivity prediction, direct predic-
tion of TO solutions, and enhancing diversity for generative de-
sign. We refer interested readers to ref. [48] for a summary of
past contributions of neural network-based TO methods. These
TO methods were usually applied to structural design problems,
where well-established physics and sensitivity analysis are avail-
able. In this section, we will cover metamaterials design under
different physics (e.g., mechanical, optical, acoustic/elastic, ther-
mal) scenarios, for some of which sensitivity analysis is either un-
available or too difficult. Due to that reason, traditional gradient-
based TO methods might not be applicable to certain types of
metamaterials design.

The benefits of data-driven methods highly depend on 1) the
cost of data collection and learning and 2) the acceleration con-
tributed by the data-driven model. To make such methods cost-
effective, the trained model needs to be reusable for different
tasks. Problems like structural optimization are usually subject
to task-dependent objectives and constraints. In this case, it is

difficult to train a single ML model that can be reused in differ-
ent tasks. In contrast, unit-cell-level metamaterial design prob-
lems under the same physics usually share common proper-
ties of interest (e.g., elasticity properties in mechanical meta-
materials and transmission and phase delay in optical meta-
materials), regardless of different functional goals (e.g., design
for compliant mechanism, energy absorption, or noise reduc-
tion). Thus, a data-driven model trained on the same proper-
ties of interest can be reused in different metamaterials design
tasks.

This section covers five types of metamaterials—optical,
acoustic/elastic, mechanical, thermal, and magneto-mechanical.
The trend of applying data-driven methods to unit-cell-level de-
sign began around 2018. In the domain of mechanical metamate-
rials, to our best knowledge, Chen et al.[36] and Gu et al.[37,38] first
proposed new data-driven methods to discover auxetic metama-
terials with extreme properties and novel composite designs in
2018. In the same year, Liu et al.,[39] Inampudi and Mosallaei,[40]

Ma et al.,[41] Malkiel et al.,[83] and Liu et al.[42] were among the
first who applied data-driven methods to assist optical metama-
terial design. After 2020, data-driven methods were incorporated
into more domains including the design of acoustic/elastic, ther-
mal, and magneto-mechanical metamaterials.[43–45] Despite dif-
ferences in physics, they share similar design scenarios: 1) design
allows high-degree of geometric freedom; 2) physical properties
are usually the target quantities of interest; 3) physical proper-
ties depend on design geometry; 4) generating random design
geometries is cheap whereas computing their physics proper-
ties is expensive. For this reason, data-driven methods developed
for metamaterials are usually applicable under different types
of physics. Thus, we focus on the goals of data-driven methods
instead of metamaterial types when characterizing past work.
Specifically, we categorize the goals into two major types — iter-
ative design optimization (Section 4.2) and iteration-free inverse
design (Section 4.3). Figure 8 illustrates the relationship between
the goals of proposed data-driven methods, the physics being
considered, and the ML models, extracted from 56 representa-
tive prior studies. These prior studies were selected from publica-
tions from 2018 to 2023, with the aim to use machine learning to
assist metamaterials design. We focus on only single-scale meta-
materials design in this section, where unit cell designs are ar-
ranged periodically in space. In Section 5, we will introduce mul-
tiscale design, where aperiodic unit cell designs are considered to
achieve spatially-varying material properties. Note that since ma-
chine learning applied to metamaterial design has gained popu-
larity, the reviewed publications represent merely a subset of the
extensive body of prior research in this field. We select the 56 pub-
lications based on their impact (as evidenced by citation counts
and journal impact).

4.2. Iterative Design Optimization

In this section, we review prior works that employed ML meth-
ods for metamaterials design optimization. In particular, ML
commonly plays roles in accelerating property evaluation (Sec-
tion 4.2.1), learning more efficient design representation (Sec-
tion 4.2.2), sequential decision making (Section 4.2.3), and
physics-informed solution generation (Section 4.2.4).
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Figure 8. Categorization of physics, goals, machine learning models, and their relations based on 56 representative prior works. (LR: logistic regression;
RL: reinforcement learning; PCR: principal component regression; DT: decision tree; DGM: deep generative model; GP: Gaussian process; MLP: multi-
layer perception; CNN: convolutional neural network; RNN: recurrent neural network; GNN: graph neural network; PINN: physics-informed neural
network.)

4.2.1. Accelerated Optimization via Data-Driven Property Prediction

In unit-cell-level metamaterials design, material properties are
usually the design target. For example, absorption spectra and
dispersion relations can be properties of interest for optical
and acoustic metamaterials design, respectively;[202,203] for me-
chanical metamaterials design, properties of interest can be
Young’s modulus, Poisson’s ratio, and volume fraction.[63] We
can perform numerical simulations or experiments to evaluate
material properties. However, depending on different physics
properties, the computational cost can be prohibitive, espe-
cially when iterative design optimization is required. Data-
driven models can learn complex structure-property relations
and hence surrogate time-consuming simulations or experi-
ments, allowing high-throughput property evaluation. This can
accelerate the design process when combined with downstream
design space exploration methods (e.g., sampling, screening, and
optimization).

Based on the reviewed literature (Figure 8), most ML-
accelerated design optimization works were based on this ap-
proach, among which the most commonly used ML models were
convolutional neural networks (CNN)[37,45,204–208] and multilayer
perceptron (MLP).[40,159,209–212] Typically, CNNs were used for pix-
elated design representations with high geometric freedom or

design dimensionality (allowing more complex designs), while
MLPs were used for parametric or shape designs with lower de-
sign dimensionality. These two models were mostly used when
the training data size was larger than 700. One special case is
ef. [159], where the local design variables of only 10 metasurfaces
along with the local patches of their electromagnetic (EM) fields
response were used as training data of a property-prediction
MLP, resulting in 123 210 actual training samples.

While the training of most neural network-based models nor-
mally requires large datasets, GP was employed when there was a
relatively small amount of training data.[87,213] GP’s ability to esti-
mate uncertainty makes it well-suited for adaptive sampling and
Bayesian optimization. These are useful design techniques es-
pecially when the computation of responses is time-consuming.
However, one limitation of standard GP models is the difficulty
in handling large datasets due to its (N3) time complexity and
(N2) memory complexit‘y, where N is the training data size.
This also limits the dimensionality of design problems to be
considered, because the required amount of data scales expo-
nentially with the dimension due to the curse of dimensionality.
Past work proposed ways to make GP more scalable with larger
datasets,[95,214–218] which can potentially expand the use cases of
GP to larger datasets and higher problem dimensions in meta-
materials design.
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Dimensionality reduction was also applied to reduce the di-
mensionality of the original design or property space before ap-
plying regression models for property prediction. Wang et al.[213]

used a Gaussian mixture beta variational autoencoder (GM-
𝛽VAE) to reduce the dimension of the pixelated metamaterials
design representation. Chen et al.[36] employed principal com-
ponent regression (PCR) to reduce the 3D metamaterial de-
sign parameters, where the PCA was followed by linear re-
gression to predict the elastic material properties of mechani-
cal metamaterials. Zhelyeznyakov et al.[159] reduced the dimen-
sion of the near-field response of the metasurface using singular
value decomposition (SVD) before applying property prediction
models.

In some works, decision trees (DTs) were used as the prop-
erty prediction model due to their interpretability and flexibil-
ity in learning non-linear structure-property relations. Elzouka
et al.[219] predicted the spectral emissivity of dielectric and metal-
lic particles. Chen et al.[102] used Generalized and Scalable Opti-
mal Sparse Decision Trees (GOSDT)[220] to predict band gaps in
different frequency ranges based on shape-frequency features ex-
tracted from acoustic metamaterial geometries. Particularly, the
interpretability of DTs allows us to extract explicit design rules
that can guide inverse design, which we will elaborate on in Sec-
tion 4.3.4.

In most prior work, metamaterials design variables were ei-
ther represented as a vector of design parameters or a tensor rep-
resenting pixelated designs, while the properties of interest nor-
mally consisted of single or multiple scalars. Beyond these com-
mon representations, Yang et al.[221] studied 3D graphene meta-
materials with a graph representation and used a graph neural
network (GNN) to predict the local atomic stress distributions.
Sajedian et al.[204] aimed at predicting the absorption curve of
plasmonic structures and solved this problem with a recurrent
neural network (RNN).

To obtain the metamaterial design solution, a common ap-
proach is to use the property prediction model as a surro-
gate design evaluation model and incorporate it into any iter-
ative optimization loop.[40,45,159,208,209,212,213] Besides iterative op-
timization, past works also employed virtual screening[221] and
sampling[37,102,210] to select design solutions, which also took ad-
vantage of the fast design evaluation capability of property pre-
diction models.

4.2.2. Accelerated Optimization via More Efficient Design
Representation

Another way to accelerate design optimization is through learn-
ing an efficient design representation (i.e., latent representation)
that is more compact than the original representation but still as
expressive, thereby covering the same design space with fewer
design variables. This benefits in three ways: 1) it mitigates the
issue caused by the curse of dimensionality when training prop-
erty prediction models, thus lowering the requirement for train-
ing data size and model complexity; 2) it enables more efficient
optimization, since searching for global optimal solutions in a
lower-dimensional latent space is easier and faster; 3) it allows
easier downstream analysis such as data visualization, cluster-
ing, and arithmetic operations in the latent space. Since we intro-

duced past work on using dimensionality reduction for property
prediction in Section 4.2.1, this section will focus on the other
two benefits.

As shown in Figure 8, most prior works under the category of
“representation learning” used DGMs. Liu et al.[70] employed a
VAE to learn a lower-dimensional latent space of pixelated optical
metasurface designs and leveraged an evolutionary algorithm to
optimize designs over the latent space. Wang et al.[66] constructed
an end-to-end model combining a VAE with a mechanical prop-
erty regressor, and learned a lower-dimensional, structured latent
space organized by mechanical properties of pixelated metama-
terial designs. Semantic operations (e.g., moving from “low stiff-
ness” to “high stiffness”) can be achieved by simply moving in
certain directions of the resulting latent space. Chen et al.[222] pro-
posed a GAN with hierarchical latent spaces to simultaneously
represent the “as-designed” and “as-fabricated” optical metasur-
faces. The model not only learned a compact latent representa-
tion for “as-designed” metasurfaces, but also captured the geo-
metric uncertainty of “as-fabricated” designs, which enables ef-
ficient and robust design optimization under fabrication uncer-
tainty. Shen and Buehler[223] used StyleGAN[224] to learn disen-
tangled latent spaces that capture attributes and variations at dif-
ferent levels. Design optimization and geometric manipulations
(i.e., projection, encoding, and mixing) can be achieved by opti-
mizing the latent vectors.

Autoencoders were also used for compressing the dimension
of the metamaterials design space.[81,225] Compared to DGMs like
VAEs and GANs, autoencoders only minimize the reconstruction
errors of training samples without considering the continuity of
the latent space, which may reduce the efficiency of design opti-
mization and latent space analysis.

4.2.3. Design as Sequential Decision Making via Reinforcement
Learning

The design problem can also be modeled as a sequential decision-
making process, which can be solved by reinforcement learning
(RL). As introduced in Section 2.2.4, the main components to be
defined in any RL tasks are state, action, and reward. Defining
these three concepts — especially the action — in a design prob-
lem needs extra consideration, unlike canonical RL problems
such as gameplay and adaptive control, since it is more intuitive
to treat metamaterials design as a standard optimization problem
rather than a dynamic problem that requires sequential decision-
making. Nonetheless, Sajedian[80] employed the Double Deep Q-
Network (DDQN)[226] to design both the material type and the ge-
ometry of the optical metasurface that maximizes hologram effi-
ciency. The actions were defined as increasing or decreasing each
design parameter by a fixed amount; the state is design param-
eters; the reward considers both the phase-generating capability
and the efficiency. Similarly, Liu et al.[44] used the DDQN to de-
sign a periodic lattice system that achieves thermal transparency.
The action was defined similarly to the one in ref. [80]; the state
is the combination of design parameters and the response of
heat fluxes; the reward is represented by how far the simulated
system is away from achieving perfect thermal transparency.
Sui et al.[81] proposed a collaborative deep Q network (DQN)
that designs mechanical metamaterials (voxelated designs
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Figure 9. “Flipping process” of the collaborative DQN method in ref. [81]: one agent selects a soft voxel and turns it into a stiff voxel, then the other
agent does the opposite. Reproduced with permission.[81] Copyright 2021, American Chemical Society.

representing the arrangement of soft and stiff materials). The
action is the “flipping process” by two agents: one agent selects
a soft voxel and turns it into a stiff voxel, while the other agent
does the opposite (Figure 9); the state is represented by the voxe-
lated design; the reward is the change of the averaged equivalent
modulus.

Sui et al.[81] compared RL with the genetic algorithm (GA) un-
der different design dimensions. The results show that RL does
not have an advantage over GA under small action spaces, but
will outperform GA when the action space becomes larger, due
to the generalization ability of deep neural networks on large ac-
tion spaces. On the other hand, with a larger action space, more
design evaluations will be required to sufficiently explore the ac-
tion space, which can quickly lead to a prohibitive computational
burden for RL. This was reflected by the design problem dimen-
sions addressed by the reviewed past works, none of which ex-
ceeded 50 dimensions.

Based on these observations, we conclude that it is important
to find the “sweet spot” of action space dimensions where RL
can outperform classic optimization methods while not requir-
ing prohibitive computational costs. When proposing RL meth-
ods for metamaterials design, one needs to compare it to op-
timization (either classic or ML-accelerated optimization as in-
troduced in Sections 4.2.1 and 4.2.2) and justify the necessity
of using RL instead of optimization methods that are usually
more intuitive and simpler to formulate. Despite the caveats, RL
can still be a promising technique in metamaterials design be-
cause 1) compared to data-driven design optimization, RL does
not require prior data and hence is not limited by the bound-
ary of existing designs, and 2) it is easier to formulate the de-
sign problem with RL when the design has an unstructured
representation (e.g., irregular truss structure represented as
graphs[227]).

4.2.4. Design via Physics-Based Learning

While physics-informed ML has drawn huge attention in recent
years, its application in metamaterials design is relatively limited.
Physics-based learning in design tasks usually uses governing
equations to guide the training of ML models which produce op-
timized design solutions. Jiang and Fan[228,229] proposed a gen-
erative neural network to generate high-performance dielectric
metasurfaces, where the generator training was guided by the

gradients from the adjoint electromagnetic simulations of gener-
ated designs. Lu et al.[230] proposed physics-informed neural net-
works with hard constraints (hPINNs) to solve the TO problem in
metamaterials design. The method builds on physics-informed
neural networks (PINNs)[167] but further allows optimizing a de-
sign objective function as well as the governing partial differen-
tial equations (PDEs) being modeled as hard constraints. The
hPINNs method was demonstrated on design problems in op-
tics and fluids. Compared to PDE-constrained adjoint-based op-
timization methods, the hPINNs method achieved the same ob-
jective value, but obtained a simpler and smoother solution with
faster convergence (Figure 10).

Unlike classic ML or data-driven methods, these physics-based
learning methods require no training data and are less sus-
ceptible to the curse of dimensionality. The optimization can
be guided by gradients and hence there is no need to explore
the entire solution space. Therefore, design via physics-based
learning can be a promising future research direction. On the
other hand, we should also note that common physics-based
learning methods such as PINNs may have stability issues in
training, due to their complicated loss functions and the need
to solve highly non-convex optimization problems.[231] Besides,
most studies only contain validation on simple academic prob-
lems, and lack evidence of efficiency in more complex and
practical use cases. These gaps need to be addressed in future
research.

4.3. Iteration-Free Inverse Design

While the reviewed works in Section 4.2 used ML methods to
accelerate design optimization, they still need an iterative opti-
mization process to obtain the final solution. In this section, we
review past works that used ML to achieve iteration-free inverse
design. There are mainly two application scenarios: 1) obtain-
ing designs that meet target properties or responses; 2) obtain-
ing near-optimal solutions under certain constraints or operat-
ing conditions. Most prior works addressed the first scenario.
Existing ML methods for iteration-free inverse design primar-
ily belong to three categories: one-to-one mapping from target to
design (Section 4.3.1), cascaded neural networks (Section 4.3.2),
and conditional generative models (Section 4.3.3). We will also
introduce a few other works that do not fall into these three cate-
gories (Section 4.3.4).
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 15214095, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202305254 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 10. Designs of permittivity obtained by a) the hPINNs method, b) PDE-constrained adjoint-based optimization with the finite-difference
frequency-domain (FDFD) method as the numerical PDE solvers, and c) PDE-constrained adjoint-based optimization with the FEM as the numeri-
cal PDE solvers. The hPINNs method achieved a simpler and smoother solution.[230] Reproduced with permission.[230] Copyright 2021, Society for
Industrial and Applied Mathematics.

4.3.1. One-to-One Direct Mapping from Target to Design

Owing to neural networks’ capability of approximating any con-
tinuous functions, it is possible and straightforward to learn a di-
rect mapping from target quantities of interest (e.g., properties or
responses) to design solutions using neural networks. Past work
has used MLPs and CNNs to learn such mappings — for exam-
ple, mapping TO settings (i.e., filter radius, volume fraction, and
the type of design objective) to corresponding 2D density maps
of mechanical metamaterials,[232] target local sound fields to 1D
acoustic metasurface designs,[233] sets of target scattering param-
eters to optical metasurface patterns,[68] transmission spectrum
to photonic nanostructure geometry,[83] and target band gaps to
phononic crystal designs.[43] To train the neural network mod-
els, most of these studies used the difference between the pre-
dicted and the “ground-truth” design solutions as the training
loss, quantified by metrics such as the mean squared error (MSE),
mean absolute error (MAE), or binary cross entropy. This poses
a problem for the faithfulness of the predicted solutions in terms
of meeting the target, because even structurally similar solutions
can result in very different quantities of interest (Figure 11a), es-
pecially when the structures are in pixelated or voxelated repre-
sentations, as also illustrated in Woldseth et al.[48]

There are works that may avoid this issue by comparing the
target quantities rather than the design solutions (i.e., measur-
ing e2 instead of e1 in Figure 11b). Malkiel et al.[83] first trained an
inverse design network to predict the photonic nanostructure ge-
ometry based on the transmission spectrum, and then fine-tuned
the inverse network by combining it with a forward response pre-
diction network. Liu et al.[234] proposed a conditional GAN-based
model to map a target holographic image to a corresponding op-
tical metasurface design. The physical operation mechanism be-
tween the electric-field distribution and the metasurface was used
to reconstruct the target image. Both the MSE and an adversar-

ial loss between the original and the reconstructed target images
were employed during training. Jiang et al.[203] used a conditional
GAN to map the target dispersion curves to the structural design
of elastic metamaterials. A CNN-based dispersion relation pre-
diction model was used for the fast screening of generated de-
signs based on the predicted dispersion curves. Instead of mea-
suring “how well the predicted design meets the ground-truth so-
lution”, these works focused on “how well the predicted design
meets the target quantities”, thus can lead to the prediction of
designs that better match the target quantities.

4.3.2. Avoiding Nonuniqueness Issue via Cascaded Neural Networks

Despite the simplicity of learning direct target-to-design map-
ping for inverse design, the underlying assumption of one-to-one
mapping from target to design can be problematic and may lead
to convergence issues during ML model training. Because
the nonunique solutions will produce conflicting training
instances where the same input is associated with different
outputs.[39] Taking mechanical metamaterials as an example,
this nonuniqueness is either owing to the fact that multiple
equivalent structures exist under periodic boundary conditions
(top of Figure 12), or because there are parts of the structure
that do not contribute to the properties (bottom of Figure 12).
Liu et al.[39] and An et al.[91] also showed a similar phenomenon
for 1D nanophotonic structures and 2D optical metasurfaces,
respectively. To overcome this nonuniqueness issue, past work
proposed the tandem neural network (T-NN) that cascades
an inverse-design network with a forward-modeling network
(Figure 13).[39,90,92,235–237] The model training is separated into
two phases: 1) training of the forward-modeling network, where
each design corresponds to a unique property or response, and
2) training of the cascaded network by fixing the pretrained

Figure 11. The issue of measuring the error in design solutions: a) Structurally similar design solutions with very different Poisson’s ratios. There is
0.16% difference in the pixelated design but 100% relative difference between their homogenized Poisson’s ratios. b) The small error e1 between the
predicted design and the true solution compared to the large error e2 between the resulting Poisson’s ratio and the target Poisson’s ratio.
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Figure 12. Multiple mechanical metamaterial designs correspond to the same properties. This nonuniqueness is either owing to the fact that multiple
equivalent structures exist under periodic boundary conditions (top), or because there are parts of the structure that do not contribute to the properties
(bottom).

forward-modeling network, where the design produced at the
intermediate layer does not necessarily belong to training data
so that the model is not trained with conflicting designs.

Besides the work using T-NN, there were other model vari-
ants with a similar idea of using cascaded neural networks to
solve the nonunique mapping problem. For instance, Ma et al.[41]

combined two bidirectional neural networks (each of which re-
sembles a T-NN) to learn the relation between optical metama-
terial design parameters, reflection spectra, and circular dichro-
ism (CD) spectra, aiming for on-demand inverse design of chi-
ral metamaterials given either the full reflection spectra or the
CD spectra.

All the surveyed studies using the aforementioned cascade
neural networks were applied to optical metamaterial design with
dimensions of design variables not higher than 25. With higher
design dimensions, it is more likely that the designs produced
in the intermediate layer easily fall out of the training data distri-
bution. When this happens, the forward modeling network is not
reliable anymore since it has not seen such out-of-distribution de-
signs. Thus, the cascaded network can still have low error while
producing designs that are irrelevant to the target. Besides, given
one target, cascade neural networks can only predict one design
solution, although there are multiple potential solutions. These
limitations motivate the use of generative models (Section 4.3.3).

Figure 13. Tandem neural network.[39,90,92,235–237] The model training is separated into two phases: 1) training of the forward-modeling network, where
each design corresponds to a unique property or response, and 2) training of the cascaded network by fixing the pretrained forward-modeling network,
where the design produced at the intermediate layer does not necessarily belong to training data so that the model is not trained with conflicting designs.

Adv. Mater. 2024, 36, 2305254 2305254 (23 of 45) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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4.3.3. One-to-Many Mapping via Conditional Generative Models

Conditional generative models’ ability to learn a distribution of
designs conditioned on any target quantities of interest makes
them the perfect candidates for learning one-to-many mappings
in inverse design applications. The conditional generative mod-
els also explicitly model the relationship between the target and
the designs and thus will not produce designs irrelevant to the tar-
get. Most prior works in this direction used conditional GANs[238]

and conditional VAEs.[239]

Conditional GANs are the primary model for achieving one-
to-many mapping in past inverse metamaterial design studies.
The original conditional GAN relies on the adversarial loss to
ensure the generated designs possess properties or produce re-
sponses that match the given target, or show optimality under
the given condition.[104,240] However, with the purpose of reduc-
ing the distance between two distributions, the adversarial loss
alone cannot promote high-accuracy matching between an indi-
vidually generated design and the corresponding target or condi-
tion. To overcome this issue, prior works mainly take three mea-
sures: 1) using a separate prediction network for fast screening of
unqualified generated metamaterials design,[91] 2) adding a pre-
diction loss to implicitly maximize the property/response accu-
racy of generated designs,[42,63,241] and 3) progressively updating
the training data by adding high-performance generated meta-
material designs and removing low-performance designs.[242]

Conditional VAEs were also employed to achieve the same
purpose.[75,76] While GANs have shown superior performance on
approximating high-dimensional and complicated data distribu-
tions, VAEs have the advantage of stable training and are able
to extract an interpretable latent space from data. Ma et al.[75,76]

showed that the latent space from the conditional VAE automat-
ically learns to distinguish metamaterial geometries from differ-
ent classes.

Note that although some works mentioned in Section 4.3.1
used conditional GANs to generate designs based on target prop-
erties, the mapping between target properties and designs is still
one-to-one.[203,234] Because these works used a generator with-
out random noise as its input, the generator can only produce
a unique design given a fixed target.

4.3.4. Other Approaches

In addition to the three main approaches mentioned above, there
are other prior works aiming to achieve iteration-free inverse de-
sign. Luo et al.[243] proposed a probability-density-based neural
network that predicts the acoustic metastructure design in the
form of Gaussian mixture model parameters given the target
transmission spectrum. By sampling from the Gaussian mixture,
this approach can generate one-to-many mappings between tar-
get responses and design solutions. However, it might not work
on high-dimensional design problems (e.g., topological design
problems) due to the need to model more complex distributions.
Elzouka et al.[219] proposed to use the decision tree to solve both
the forward prediction and inverse design problem. After train-
ing a decision tree for forward prediction, one can trace up the
tree branches from the target response (at leaf nodes) through
all branch-splitting criteria. These criteria can be used as design

rules to select designs satisfying the given target. This approach
naturally captures the one-to-many mapping behavior of inverse
design problems, and the extracted rules are interpretable. How-
ever, this approach does not suit high-dimensional design prob-
lems either, due to the high computational cost of training deci-
sion trees with a large depth. Gu et al.[38] trained a linear model to
classify metamaterial geometries into “good” and “bad” designs
based on their toughness and strength. The weights of the linear
model indicate how each element in the design contributes to the
performances (Figure 14), based on which new high-performing
designs can be sampled. Since the continuous property predic-
tion task was simplified to binary classification, a linear model is
sufficient to achieve high predictive accuracy while having the ex-
plainability to guide the generation of new designs. Mao et al.[244]

trained a GAN to generate metamaterials with extreme properties
such as the Hashin-Shtrikman upper bounds on isotropic elas-
ticity. While Refs. [38] and [244] enabled inverse design with high
design freedom, they both used training datasets on the order of
millions of evaluated designs, which can lead to extremely high
data collection costs. Solving high-dimensional design problems
with small amounts of labeled data is an open research topic and
is worth studying in engineering domains, where labeling usu-
ally requires expensive simulations or experiments.

4.4. Discussion and Future Opportunities

Based on Figure 8, the most frequently used ML models for
metamaterials design are DGMs, MLPs, and CNNs, all of which
are based on neural networks. Also, almost all ML models for
iteration-free inverse design are based on neural networks. The
flexibility and scalability of neural networks give them the versa-
tility to address various types of problems with high complexity
and ill-posedness (e.g., inverse design). On the other hand, the re-
quirement of large datasets and low interpretability have limited
the performance and applications of neural networks. To illus-
trate and summarize the advantages and disadvantages of differ-
ent methods, in this section, we compare existing works in terms
of their cost-benefit and trustworthiness.

4.4.1. Cost-Benefit

The cost of using ML models mainly exists in three stages: data
collection, training, and inference. The inference stage is nor-
mally much cheaper than the other two stages and hence its
cost can be negligible. In most data-driven metamaterials design
works, data collection includes expensive physics-based simula-
tions. Thus, the data collection cost usually contributes to most
of the total cost and highly depends on the size of the training
dataset (with the exception of semi-supervised or unsupervised
learning). The training cost also depends on training size, among
other factors such as model complexity and the number of train-
ing epochs. Therefore, we focus on training size when analyzing
the cost.

The usefulness of ML models also depends on the benefits
they can provide. Since ML usually aims at accelerating the de-
sign process, we can use the reduction of computational cost as
a criterion to evaluate benefits (i.e., the computational cost dif-
ference between conventional methods and data-driven methods
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Figure 14. Weights outputted from the linear model show how much each element contributes to a) toughness and b) strength.[38] Colors represent the
weight of each element: blue represents negative weights and red represents positive weights. Numbers on the elements represent the ranks in terms
of weight. Reproduced with permission.[38] Copyright 2018„ Elsevier Ltd.

at inference). However, many prior studies did not include such
information. Another important factor that reflects the benefits
of ML models is the complexity of the design problem they can
address. The complexity highly depends on the dimensionality of
the design space. Therefore, we consider the design dimension
as an important factor when evaluating benefits.

Figure 15 shows the ML models employed in each prior work,
in relation to the training data size and the design dimension

used for demonstration. Note that the training size and design
dimension are extracted from the experimental settings in prior
works and do not necessarily indicate any strict model require-
ments. This figure shows that when the design problem has a
dimension of less than 200, MLPs are the most commonly used
ML model, usually with the existence of relatively large training
datasets. An exception is Zhelyeznyakov et al.,[159] where the ac-
celerated design of high-dimensional dielectric metasurfaces was

Figure 15. Methods proposed in prior work, in relation to the training data size and the design dimension used for demonstration. The publications
considered here are the articles shown in Figure 8, excluding those without the information of training data sizes or design dimensions. Please see
Section S1, Supporting Information for the complete list of publications used to plot this figure. Note that the training size of RL represents the number
of design evaluations performed during training. (LR: logistic regression; DR: dimensionality reduction; RL: reinforcement learning; PCR: principal
component regression; DT: decision tree; DGM: deep generative model; GP: Gaussian process; CNN: convolutional neural network; MLP: multi-layer
perceptron.)
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achieved by using an MLP and the data of only 10 designs. In
that work, instead of treating each entire design as a training
sample, local patches of the design geometry and the electromag-
netic field were used. The trained MLP can then be applied to pre-
dict the EM field of the entire metasurface. Other models includ-
ing GP, RL, and DT were also applied in low-dimensional cases.
By combining with dimensionality reduction methods such as
autoencoders[43,68] and VAEs,[213] both MLP and GP show the
capability of addressing problems in much higher dimensions.
Prior works using CNNs were applied to solving problems with a
wide spectrum of dimensions, with training sizes ranging from
1000 to 200 000.

For problems with over 1000 dimensions, DGMs were the
most commonly used models. With the capability of represen-
tation learning and modeling one-to-many mapping, DGMs are
applicable to both iterative design optimization and iteration-free
inverse design (Figure 8). When used for representation learn-
ing, DGMs can be trained with unlabeled data, such that a more
compact design representation is learned from only geometric
data,[70,222,223] which avoids time-consuming simulations when
preparing training data and produces reusable design represen-
tations for problems with different properties or responses of
interest. When using DGMs for iteration-free inverse design,
labeled data are normally required for the DGMs to learn the
mapping from properties or responses to metamaterial designs.
As labeled data are usually acquired by expensive simulations
or experiments, we need a careful cost-benefit analysis to deter-
mine whether the acceleration brought by a DGM is worth the
cost of data collection and training (as in all supervised learn-
ing tasks). There are exceptions where the requirement was re-
duced to partially labeled or even unlabeled data. Ma et al.[75,76]

proposed a framework that can use both labeled and unlabeled
data for data-driven inverse design of optical metasurfaces, where
adding unlabeled data was shown to improve model perfor-
mance. For the same purpose of optical metasurface inverse de-
sign, Liu et al.[234] incorporated the physics-based operation be-
tween the electric-field distribution and the metasurface design
into the decoder of the conditional generative model, which elim-
inates the need for design evaluation when preparing training
data.

By infusing physics into ML models, we can even eliminate
the need for training data. As discussed in Section 4.2.4, Jiang
and Fan[228,229] proposed a generative model whose training was
guided by the gradient from the adjoint simulation, so that high-
performance dielectric metasurface designs can be generated
without using training data. Lu et al.[230] proposed hPINNs that
can optimize a design objective under constraints of governing
PDEs[245]. However, as mentioned in Section 4.2.4, while these
physics-informed methods can have zero data collection cost,
their training can be unstable due to highly non-convex loss
functions[231] and hence may bring extra costs (e.g., from exhaus-
tive hyperparameter tuning).

Overall, compared to iterative design optimization, iteration-
free inverse design trades off accuracy (i.e., how well the solution
matches the true target) for time. Nonetheless, to improve ac-
curacy while still keeping a low computation time, we can use
inverse design methods to generate near-optimal solutions as
warm starts and further refine the solutions by using optimiza-
tion with a relatively small number of iterations.[240]

Besides design dimensionality, we need to consider another
important factor in evaluating the benefits of machine-learning
methods — whether the trained model is applicable to suffi-
ciently many scenarios. To quantify this generality, Woldseth
et al.[48] proposed a generality score for neural network-based
methods used in TO, which accounted for the required similar-
ity of test and training problems (i.e., higher similarity indicates
lower generality), in addition to other TO-related criteria. This
test-training similarity is also transferable to measuring general-
ity in ML-based metamaterial design. Among the reviewed past
works, the majority require the training and test problems to be
similar (i.e., having the same design representation and the same
properties or responses of interest). One exception is the works
on representation learning, where the learned representation can
be applied to design problems with different properties or re-
sponses of interest. Another exception is Zhelyeznyakov et al.,[159]

where the design dimension of test problems can vary since the
ML model only cares about the local patches of the design geom-
etry.

Note that although the aforementioned physics-based models
have the benefit of requiring no training data, the fact that they
need fully specified problem settings (e.g., design constraints,
boundary conditions, and operating conditions) for training
makes the trained models difficult to generalize beyond the prob-
lem specification considered during training, i.e., we need to re-
train the model for different problem settings.

4.4.2. Trustworthiness

The trustworthiness of ML-based design methods is important
in many engineering problems, especially safety-critical and risk-
sensitive ones such as metamaterials for blood vessel stents[246]

and medical imaging.[43] One important aspect of trustworthi-
ness is quantifying the uncertainty of metamaterial designs to ob-
tain robust or reliable solutions. This uncertainty quantification,
however, is understudied in past literature. Uncertainty comes
from sources including operating conditions and the fabrica-
tion process. Machine learning models can also have uncertainty
due to insufficient data. Data-driven design methods considering
these uncertainties can make more informed decisions and gen-
erate more trustworthy solutions.

Particularly, due to fabrication uncertainties, the properties
or responses of as-fabricated metamaterials can largely deviate
from the as-designed ones. Figure 16a shows an example of ge-
ometric deviation of fabricated metasurface patterns. Figure 16b
shows how geometric deviation can lead to response changes.
The nominal design is represented as 64 × 64 binary pixelated
images where 1 (yellow) represents material and 0 (dark blue)
represents void. The perturbed design is obtained by slightly dis-
torting the nominal design, which mimics the fabrication er-
ror. The figure shows that the absorbance spectrum changes
significantly due to this small perturbation, indicating the ne-
cessity of quantifying fabrication uncertainty. Due to the high
dimensionality of variables to be considered in geometric un-
certainty quantification, previous metamaterials design work as-
sumes uniform boundary variation where the boundary of the ge-
ometry is uniformly “eroded” (e.g., over-etched) or “dilated” (e.g.,
under-etched).[247] To avoid making simplifying assumptions on
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Figure 16. Fabrication uncertainty and its effects on design performance. a) Examples of metasurface patterns fabricated through the electron-beam
lithography,[248] where the nominal design is a nanocylinder with the circular cross-section (source: Balogun Research Group at Northwestern University).
b) Effects of geometric perturbation on the absorbance profile of a metasurface, where the nominal design is the optimal solution of the deterministic
optimization from Chen et al.[222]

the form of uncertainty and preserve the high degrees of free-
dom of geometric uncertainty, Chen et al.[222] proposed a DGM
with hierarchical latent spaces to simultaneously model the geo-
metric variation of nominal designs and the freeform uncertain-
ties of fabricated designs. Chen et al. incorporated this generative
model in robust design optimization and demonstrated notable
improvement in as-fabricated design performances compared to
only considering uniform uncertainty.

Another key aspect of trustworthiness is interpretability, where
humans can understand the reasoning behind an ML model’s
prediction or decision. Past metamaterial design works have ei-
ther used inherently interpretable models like linear models,[38]

decision trees,[102,219] or physics-assisted models that infuse gov-
erning PDEs[230] and physics-based solvers[228,229] into neural net-
works. These methods improve interpretability in different ways:
inherently interpretable models such as decision trees and gen-
eralized linear models allow us to extract design rules or inves-
tigate the importance of design variables; while physics-assisted
models use physics rules to constrain the search of model pa-
rameters and solutions during model training. Existing stud-
ies using inherently interpretable models (i.e., decision trees)
only considered very simple (low-dimensional) designs due to
the prohibitive computational cost when using these models
for high-dimensional inputs. The application and development
of inherently interpretable models (e.g., neural network-based
models[249,250]) for complex, high-dimensional metamaterial de-
signs were under-explored.

4.4.3. Novelty

Another under-studied challenge in data-driven metamaterials
design is how to create novel designs beyond just interpolat-
ing existing ones to achieve unprecedented properties or re-
sponses. Reinforcement learning can discover novel solutions,
but past works only used RL to address low-dimensional design
problems, due to the computational cost issue (Section 4.2.3).
Data-driven methods using classic ML models are built on the
i.i.d. assumption that training and testing data are indepen-

dent and identically distributed. To extrapolate outside existing
designs, the training data needs to be updated with desirable
generated designs to shift the training data distribution, and
the model needs to be retrained on the updated training data.
One usually needs to repeat this process many times to obtain
a significant improvement over originally existing designs.[37]

Without retraining, data-driven models cannot learn useful in-
formation that generalizes to scenarios outside existing train-
ing data distribution, and therefore cannot lead to novel solu-
tions beyond data distribution. More sophisticated methods are
needed to distill generalizable information and create novel de-
signs. Chen et al.[36] extracted parameterized templates of five
3D auxetic metamaterial families from data. The templates can
then be used to generate new designs beyond training data, al-
though these new designs have the same topologies as the five
families. Future research may explore new methods to gener-
ate designs that break more limitations prescribed by existing
data.

5. Data-Driven Multiscale Metamaterial System
Design

Traditional structural design methods and their data-driven coun-
terparts often focus on homogeneous material distributions. In
contrast, some functional engineering structures require hetero-
geneous property distributions to meet spatially varying require-
ments, which are critical in achieving better performance and
more complex functions. For instance, an invisibility cloak re-
quires heterogeneous properties around an object to prevent it
from detection with external physical fields.[9,13,251] Requirements
on heterogeneous properties can also be found in soft robots,
where the goal is to achieve local or global target postures.[1–4]

Recently, structural design methods have evolved to optimize
both the structure and the distribution of multiple materials for
heterogeneous property requirements. TO is the most flexible
among these methods, enabling freeform changes to the struc-
ture and providing greater design freedom than traditional pa-
rameter or shape design methods.[100,252] Despite its promise, it
is still challenging to fabricate these multi-material structures
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Figure 17. Metamaterials and multiscale systems. a–c) Materials exhibit different Poisson’s ratios v derived from different microstructures, i.e., different
transverse displacements given the same pressing loading on the top, with the transparent boxes showing the original shapes before distortion. d)
Multiscale orthopedic implant design. Reproduced with permission.[254] Copyright 2019, Elsevier B.V. e) Multiscale design for shape morphing under
thermal excitations. Reproduced with permission.[255] Copyright 2016, Macmillan Publishers. f) An illustration of the multiscale metamaterial system
design process.

in achieving as-designed functions. This issue is caused by the
narrow selection of available materials and the constraints of
manufacturing processes. In contrast, complex geometries can
be more easily manufactured at fine resolutions with additive
manufacturing.[253] This technical revolution has opened up new
avenues to realize unprecedented and tailorable material prop-
erties by changing the geometry of microstructures rather than
constituent materials,[5–8] as shown in Figure 17a–c. Therefore,
heterogeneous properties can be obtained by spatially varying the
microstructures, instead of constituent materials, to assemble a
multiscale metamaterials system for intricate structural behav-
iors (Figure 17d,e).[254,255] In this section, we will discuss data-
driven methods for designing multiscale metamaterial systems
that determine architectures at both micro and macro scales to
achieve the desired metamaterial behaviors. Our focus is on the
heterogeneous distribution of (effective) mechanical or thermal
properties that originate from the lower material scale, as these
physics are involved in most existing multiscale metamaterial de-
signs. For designs with other underlying physics, we refer readers
to Refs. [50, 53, 56–58, 256].

5.1. Overview

Multiscale structures with carefully tuned microstructures have
been shown to have the edge over single-scale design (macroscale
only with homogeneous materials or periodic unit cells dis-
cussed in Section 4) for engineering applications involving multi-

physics or spatially varying requirements. Typical applications in-
clude strain cloaking,[257,258] target deformation design,[28,34,35,259]

thermal-elastic property optimization,[260–262] dynamic behav-
iors design,[22,93,263–265] buckling resistance,[266,267] and energy
absorption.[268–270] However, the design of multiscale structures
is a complex two-scale problem, as shown in Figure 17f. At the
macroscale, the topology of the structure and its mechanical
properties distribution are optimized to meet performance tar-
gets, while at the microscale, unit cells need to be designed at dif-
ferent locations to achieve the corresponding properties. Ideally,
the design process for a multiscale metamaterial system should
be carried out in a way that the two scales are coupled and de-
signed concurrently. This means that the design of the microscale
and macroscale architectures should be done simultaneously and
interactively, rather than separately and independently. This hier-
archical nature of the system poses unique challenges in the de-
sign process compared to the single-scale TO methods illustrated
in Section 4.

First, at the macroscale, property parameters required to fully
describe the physical response of materials are generally high-
dimensional without strict bounds for the achievable properties.
This leads to an ill-defined property design space and a compli-
cated optimization process. As a result, most existing methods
are subject to over-simplistic constraints on the design space of
properties. Second, at the microscale, the design of microstruc-
tures is an inverse problem without much a priori design knowl-
edge (see Section 4). It is characterized by its infinite-dimensional
geometrical design space and one-to-many mapping from

Adv. Mater. 2024, 36, 2305254 2305254 (28 of 45) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202305254 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 18. Illustration of bottom-up and top-down frameworks. The target displacement profile (red dashed lines) is used as an example of the system-
level design objective.

properties to structures. This creates an irregular landscape for
the design objective (macroscale properties or performance) with
many local optima, making the design sensitive to the initial
guess and constraints. Finally, the synthesis of micro- and macro-
designs suffers from the nested optimizations at both scales,
“the curse of dimensionality” induced by the hierarchical mul-
tiscale design space, complex combinatorial search associated
with the unit-cell selection, and adjacent microstructures whose
shapes are incompatible at their interfaces (geometrical frustra-
tion). For instance, a typical formulation for hierarchical topology
optimization involves coupling a macroscale optimization prob-
lem with a set of micro-scale problems at the element level.[271,272]

In each iteration, the macroscale problem assesses overall per-
formance, as well as the sensitivity of macroscale properties and
design variables, based on micro-scale properties homogenized
at the element level. Subsequently, the performance and sensitiv-
ity information is transmitted to the micro-scale level to formu-
late element-wise microscale optimization problems. They aim
to evolve the unit-cell geometry to achieve optimal homogenized
properties. Consequently, the number of design variables in this
scenario corresponds to the product of the design resolutions
at both macro- and microscale levels. The hierarchical nature
makes the microscale problems independent from each other
while certain local expansion methods[273] can decouple the two
scales. They both can alleviate the computational cost to some ex-
tent by allowing parallel computing. Nonetheless, the indepen-
dent macroscale designs and separated scales can lead to geo-
metric discrepancies and discontinuous load-bearing paths be-
tween cells. Such issues can undermine the manufacturability
and overall performance of the multiscale structure. Due to these
issues, traditional multiscale topology optimization methods
are either overwhelmingly time-consuming or restrictive in de-
sign flexibility to achieve heterogeneous multiscale metamaterial
systems.

Capitalizing on the growth of data resources and computa-
tional capability, data-driven design based on ML models is rec-
ognized as a promising tool to address the aforementioned chal-

lenges for multiscale systems. We underscore that data-driven
multiscale designs do not supplant the use of traditional struc-
tural optimization methods within the design framework; rather,
they enrich these methods by substituting specific components
(such as design representation, homogenization, and nested mi-
croscale designs) with gathered data or machine learning mod-
els. The effectiveness of the data-driven approach hinges on com-
bining rigorous and matured optimization techniques with the
capabilities of data science. As depicted in Figure 18, we pro-
pose to divide existing data-driven multiscale design frameworks
into two main categories, i.e., bottom-up and top-down frame-
works, based on the relations between design variables at the
two scales. The bottom-up framework directly uses the param-
eters at the microscale level, e.g., volume fraction and unit cell
type, as design variables. Costly nested calculation of effective
properties of the unit cells is replaced by a surrogate model
of the structure-property mapping. In contrast, with the top-
down framework, the macroscale topology and spatial distribu-
tion of homogenized material properties are concurrently opti-
mized first. Then, to assemble a full multiscale structure, the
optimized properties will serve as targets to retrieve the cor-
responding building blocks. To accelerate this assembly pro-
cess, ML models trained at the microscale level (Section 4) can
be used to compactly represent and/or efficiently generate unit
cells.

The pioneering works in data-driven multiscale metamaterial
design initially emerged within the bottom-up framework, which
has fewer demands on data volume, unit-cell geometry complex-
ity, and the versatility of ML models. In fact, the foundational
work by Bendsøe and Kikuchi in 1988,[274] which laid the ground
for TO, conceived structural design as the optimization of
spatially distributed infinitesimal square cells. A material model
was employed to establish the connection between geometric pa-
rameters and homogenized properties. Although the data-driven
model is not the focus in this homogenized method, it can be
regarded as the precursor to the bottom-up framework. However,
due to limitations in computational power and manufacturing
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Figure 19. Three bottom-up frameworks. a) Property space of single-class unit cell. b) Property space of oriented unit cell. The shaded regions are for
unit cells with non-zero oriented angles. c) Property space of a diversified set of unit cells. The property curves are colored in accordance with the colors
of unit cell classes. Corresponding multiscale designs with d) single-class unit cells, e) oriented unit cells, f) diversified unit cells.

capabilities of that era, subsequent endeavors within the TO
community leaned toward single-scale design.[275–277] These
efforts modified the homogenized material model to encourage
binary material distribution at the macroscale, avoiding macro-
elements with intermediate density corresponding to different
microscale designs.[278–280] Advancements in computational
and manufacturing capacities eventually rekindled interest in
the multiscale design and bottom-up framework. Bottom-up
methods integrate diverse unit-cell parametric models and
ML methods, reintroducing the microscale dimension into
TO. Intriguingly, while early TO works shifted from intricate
homogenized models to simpler single-scale designs, recent
years have witnessed the emergence of data-driven bottom-up
methods aimed at augmenting unit-cell design complexity and,
consequently, design flexibility. This progression has led to
divergent developments, such as unit-cell reorientation and the
diversification of their topologies. As data-driven models, par-
ticularly deep learning models, continue to mature, the pursuit
of heightened design flexibility has propelled the ascent of the
top-down framework. This framework accommodates an even
broader array of unit-cell designs, including those that are highly
diverse and free-form in topology.

In the remainder of this section, we will illustrate and review
the state-of-the-art of these two frameworks. This section is struc-
tured in a manner that closely follows the chronological progres-
sion, tracing the evolution toward expanding the unit-cell design
space. Our approach begins with the foundational bottom-up
framework, followed by the introduction of enhanced bottom-up
methods that incorporate the design of unit-cell orientations and
diverse configurations. Concluding this trajectory, we delve into
a review of top-down methods that offer the utmost design flexi-
bility.

5.2. Bottom-Up Framework

In this section, we will focus on the most commonly used
data-driven multiscale design framework, i.e., bottom-up frame-
work. We will start from the simplest bottom-up framework with
only single-class unit cells to explain each basic component.
Then we will review different modified variants that aim to in-
crease the unit-cell diversity and complexity for higher design
flexibility.

5.2.1. Data-Driven Design with Single-Class Graded Unit Cells

Most bottom-up data-driven methods assumed the same topo-
logical concept (single-class) for all the microstructures and
only spatially vary, i.e., grade, the geometrical parameters as
shown in Figure 19a,d. Lattice-based[281] and surface-based mi-
crostructures were commonly used due to their simplicity and
good manufacturability. One could change the thickness of rods
or surfaces[282] to obtain different geometries, with each corre-
sponding to a specific volume fraction. The thickness or the vol-
ume fraction can be used as design variables in the optimiza-
tion process. An advantage of this graded single-class assump-
tion is that one could leave out the microscale details during the
optimization and directly optimize the spatial distribution of geo-
metrical parameters at the macroscale instead. This is also called
homogenization-based design. The data-driven aspect of this
framework is that the time-consuming homogenized properties
evaluation in each iteration was replaced by a surrogate model,
capturing the relation between geometrical parameters and the
precomputed properties. Some examples of such models are
exponential function,[283] polynomial,[281,284] Kriging,[282] diffuse
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Figure 20. Examples of oriented two-scale designs. a) Compatible tiling without unit cell orientation design. b) Incompatible tilling with unit cell ori-
entation design. c) Oriented design using conformal mapping. Reproduced with permission.[290] Copyright 2021, ASME. d) De-homogenized design
via cosine-based mapping. Reproduced with permission.[291] Copyright 2018, John Wiley & Sons, Ltd. e) De-homogenized design obtained for multi-
loading cases using microstructures with three different layers. Reproduced permission.[292] f) De-homogenized design via Fourier-series-based map-
ping. Reproduced with permission.[293] Copyright 2020, Elsevier Ltd. g) De-homogenized design via saw tooth-function-based mapping. Reproduced
with permission.[93] Copyright 2022, Elsevier B.V.

approximation[285] and neural network.[286] After optimization,
the corresponding multiscale structure can be obtained by filling
the macroscale design with the microstructures specified by the
optimal parameters, a process known as de-homogenization.[287]

Despite its simplicity and high efficiency, single-class data-
driven graded design usually leads to sub-optimal solutions since
the microstructures belong to the same topological class with
fixed unit cell orientations. For example, to optimize compli-
ance for both single-loading and multi-loading cases, microstruc-
tures must consist of oriented two and three alternating layers
of orthotropic materials, known as rank-2 and rank-3 materials,
respectively.[288] These microstructures are referred to as rank-
2 and rank-3 materials, respectively. Achieving these designs re-
quires spatial changes to the unit cell topology and orientation.
Although most existing designs used compliance minimization
as the demonstrative case, the single-class graded microstruc-
tures did not meet the optimum requirement.[289] As a result, the
performance of the multiscale design was even worse than the
single-scale design. Similar observations were also reported in
various applications, such as frequency response control[93] and
natural frequencies maximization.[149] To increase design flexi-
bility, many studies were dedicated to 1) increasing the diversity

of microstructures and/or 2) considering unit cell orientation de-
signs. As shown in Figure 19c,d,f,g, these two variants of bottom-
up methods can both expand the property space of the database.
The rest of Section 5.2 reviews these approaches.

5.2.2. Variant 1: Considering Unit-Cell Orientation

The major obstacle in designing graded structures with oriented
microstructures lies in the de-homogenization process. When
the unit-cell orientations vary across the macroscale structure, the
corresponding microstructures need to be rotated accordingly.
However, neighboring microstructures might not connect with
each other after rotation (Figure 20a,c). This causes the multi-
scale structure to fail to attain the designed performance and,
furthermore, impossible to manufacture. The key to mitigating
this issue is to construct a smooth mapping from the stand-alone
regular unit cells (e.g., unit cells shown in the upper corners
of Figure 20b) to an assembled tiling (e.g., the multiscale struc-
ture shown in Figure 20b), which can distort the micro-structure
to ensure compatibility but at the same time retain their effec-
tive properties.
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Conformal mapping is considered a powerful tool to real-
ize this mapping since it can preserve the angle of the geo-
metrical features and thus minimize the variation in effective
properties.[294] Jiang et al.[290] constructed conforming mapping
after homogenization-based design to morph a rectangular tiling
of periodic microstructures into corresponding irregular regions
in the multiscale structure (Figure 20b). However, the design
of unit-cell orientations was not considered in this study. Ma
et al.[295] used a linear combination of a set of basis functions
to parameterize the mapping from a predefined unit cell to a
multiscale oriented tiling. The coefficients of the basis functions
were used as design variables, and used to train an MLP model to
predict effective properties from the local Jacobian matrix of the
corresponding mapping. While this method allowed the implicit
design of unit-cell orientation, the design space was restricted by
the form and orders of basis functions, as well as the predefined
shapes of unit cells.

In a major advance in 2008, Pantz and Trabelsi[296] focused on
square microstructures with rectangular holes and proposed a
method to project a homogenized design to a multiscale struc-
ture with oriented microstructures on a high-resolution mesh.
They achieved this de-homogenization process by constructing
implicit mapping functions from a pair of cosine fields to approx-
imate the oriented unit cells in different spatial locations. Later,
Groen and Sigmund[291] simplified this de-homogenization pro-
cess by introducing the connected component labeling method to
obtain a consistent orientation field, and by relaxing the optimiza-
tion problem for the mapping function (Figure 20d).[291] This
simplified method was further extended to enable the efficient
design of 3D multiscale structures.[297] The de-homogenization
process was accelerated by training a neural network to obtain
the mapping function from the optimized unit-cell orientations
without any extra optimization process.[298] Although the de-
homogenization method is appealing in terms of efficiency and
performance, it is still confined to simple static compliance min-
imization problems.[299,300] The reason is that its original version
can only handle square cells with rectangular holes, simply mak-
ing the unit-cell orientation align with the principal strain di-
rection. While these designs are optimal for static compliance
minimization under a single loading, they would become sub-
optimal for general design cases, such as multi-loading, dynamic
response optimization, and multi-physics problems.

To extend the applicability of de-homogenization, various en-
hanced methods have been proposed to accommodate more
complicated unit cells. Ladegaard et al.[292] combined three co-
sine fields to construct the implicit mapping functions for ori-
ented rank-3 microstructures (Figure 20e). It enables the de-
homogenization to find the optimal structures for static compli-
ance problems in multi-loading cases. To handle freeform unit
cells, Tamijian et al.[293] represented the complex unit-cell ge-
ometries as a Fourier series and optimized the spatial distri-
bution of each Fourier basis to orient unit cells in a compat-
ible way (Figure 20f). Groen[287] suggested using cosine func-
tions to construct a similar implicit mapping from regular unit
cell regions into oriented patches. Inspired by the texture map-
ping in computer graphics, Kumar et al.[301] adopted a finite-
element mesh to parameterize this implicit mapping. The map-
ping was obtained by solving a set of linear equations associ-
ated with the discrete mesh. While these extensions allowed the

use of more complicated unit-cell geometries, their constructed
implicit mapping was not conformal and may deteriorate the
performance of the multiscale designs. In a more recent work,
Wang et al.[93] proposed to construct a conformal mapping in
the de-homogenization process by using Sawtooth function fields
(Figure 20g). Unit cells with mixed-class topologies were then
used to broaden the property space, with neural networks as sur-
rogate models.

Overall, this branch of variants enabled the de-
homogenization process to obtain high-resolution multiscale
structures composed of oriented unit cells with superior ef-
ficiency. It has been extended to handle complex unit-cell
geometries and is emerging as an effective method for large-
scale structural designs. However, the works under this category
all focused on static compliance minimization problems with
a few exceptions. Although a microstructure comprised of
multiple solid layers in de-homogenization is optimal for mini-
mizing static compliance, determining the optimal microscale
geometry becomes non-trivial and challenging for general de-
sign problems with system-level performance objectives. In the
context of metamaterial system design, complex functionalities
encompassing multiple physics can necessitate distinct geomet-
ric configurations and discontinuous variations in unit cells.
Examples of these complexities include wave guiding[21,28] and
energy absorption,[268,269] which often cannot be easily achieved
through smooth mappings.

5.2.3. Variant 2: Increasing the Diversity of Unit Cells

The second branch of the variants aims to increase design flexibil-
ity by considering diverse micro-structure topologies in the opti-
mization. As illustrated earlier, the success of data-driven graded
design relies on the low-dimensional descriptor of unit cell ge-
ometries. Therefore, the key challenge addressed in this branch
of variants is to represent broader sets of unit-cell topologies with-
out significantly increasing the dimension of descriptors.

As shown in Figure 19f and Figure 21, a relatively straight-
forward idea is to include multiple unit cell classes in the opti-
mization, each with its own low-dimensional parameterization.
By considering a unit cell class as a special type of discrete ma-
terial, this idea naturally fits into the discrete material optimiza-
tion framework. In this framework, the unit cell class was repre-
sented by one-hot encoding and relaxed to be a continuous vari-
able by adding penalization or constraints.[302] This enabled the
automatic selection of the optimal unit-cell classes for different
spatial regions in the optimization. Due to its simplicity, it has
become the most commonly used framework to accommodate
multiple unit-cell classes in the multiscalse system design.

However, the dimension of design variables (one-hot encod-
ing) for each microstructure grows linearly with the number of
classes being considered. This will greatly increase the execu-
tion time and complexity. Meanwhile, the one-hot encoding only
represents the unit-cell classes in a qualitative way without any
physical meaning. As a result, the surrogate models and the opti-
mization process cannot explicitly exploit the correlation or sim-
ilarity between different classes for better performance. To ad-
dress these issues, Wang et al.[87,95,149] proposed a multi-response
latent variable Gaussian process (MR-LVGP) and its enhanced
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Figure 21. Multiscale designs with diversified unit cells. a) Design with multiple unit cell classes. Reproduced with permission.[95,149] top) Copyright
2022, ASME. bottom) Copyright 2022, Elsevier Ltd. b) Multiscale design with unit cells that allow a smooth transition between two classes. Reproduced
with permission.[303] Copyright 2018, Springer-Verlag GmbH Germany. c) Multiscale design with blended unit cells. Reproduced with permission.[304]

Copyright 2021, Springer-Verlag GmbH Germany. d) Multiscale design with concurrently optimized unit cell prototypes. Reproduced with permission.[264]

Copyright 2020, Elsevier Ltd. e) Smooth transition of spinodal metamaterials. Reproduced with permission.[90] Copyright, 2020, Creative Commons CC
BY. f) Multiscale design with spatially varying spinodal microstructures. Reproduced with permission.[305] Copyright 2021, Elsevier B.V. under the CC BY
license. g) Multiscale design with selected symmetric types of candidate spinodal microstructures. Reproduced with permission.[306] Copyright 2022,
Wiley-VCH GmbH.

variants to transform the discrete classes into continuous 2D la-
tent variables through statistical inference. The constructed la-
tent space captured the effects of classes on the mechanical prop-
erties, which induced an interpretable distance metric that re-
flects the similarity with respect to properties (Figure 21a). More-
over, with the nonlinear embedding, the dimension of the la-
tent space remained when the number of unit cell classes in-
creased. By integrating the MR-LVGP models with TO, an effi-
cient data-driven optimization process was developed that can

concurrently explore multiple classes and/or constituent mate-
rials and their associated geometric parameters for better struc-
tural performance.

To further increase the diversity in unit-cell geometries, it is
desirable to enable the transition or blending between discrete
unit-cell classes (Figure 21b–d). In this way, new micro-structure
prototypes can be created that go beyond the geometries and
properties of given classes. To achieve this, Wang et al.[303,307] es-
tablished a sophisticated parameterization method for selected
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classes of microstructures formed by multiple groups of rods
(Figure 21b). By changing the relative ratio among the rod thick-
nesses of different groups, a smooth transition between multi-
ple unit-cell topologies can be achieved. However, this parame-
terization technique is difficult to generalize to other microstruc-
tures with freeform topologies. Chan et al.[65] proposed a more
general shape blending scheme that can accommodate freeform
unit cell classes with distinct and even incompatible topologies,
generating smoothly graded microstructures (Figure 21c). The
interpolation scheme only had a few extra parameters, which can
be directly integrated into the data-driven graded design frame-
work with a neural network as the surrogate model for properties.
While blending multiple unit classes expands the design space,
it requires a set of prespecified unit-cell prototypes. How to ob-
tain an optimal set of prototypes is problem-dependent and gen-
erally unknown beforehand. In Chan et al., the sets were selected
either using domain knowledge or an autonomous set selection
method that maximizes diversity metrics.[65] Instead of using pre-
specified prototypes, Zhang et al.[264,308,309] propose to simultane-
ously evolve the prototypes during the optimization. The surro-
gate model to predict the properties of interpolated unit cells, i.e.,
a GP model, was also updated in each iteration after evolving the
prototypes (Figure 21d). By doing so, the initial prototypes can
change their shapes to better handle customized design scenar-
ios.

Besides considering multiple classes and their interpolation,
special types of materials, i.e., spinodal materials, are emerging
as a promising choice in data-driven multiscale design. These
stochastic self-assembled materials can easily achieve diverse mi-
croscale geometries with inherent connectivity when the volume
fraction is above a given theoretical threshold.[310] The bottom-
up framework is also applicable to the design of these stochastic
materials, by generalizing the unit cell concept to include RVE
(see the concept definition in Section 2). Zheng et al.[305] used
Gaussian random fields to describe micro-structures of spinodal
materials and train a fully connected neural network to associate
the field parameters with the effective mechanical properties
(Figure 21e,f). By using the field parameters as design variables,
a multiscale structure with spatially varying but smoothly graded
microstructures can be achieved.[90] Senhora et al.[306] simplified
the design of spinodal materials by focusing on selected symmet-
ric types of candidate spinodal architected materials, extending to
accommodate various complex 3D designs (Figure 21(g)).

5.3. Top-Down Framework

The bottom-up framework illustrated in the last section de-
pends on a properly parameterized unit cell model with low-
dimensional variables. While this constrained design space
greatly expedites the design process, it also shrinks the prop-
erty space, which will fall short for advanced applications such as
soft robots[2] and mechanical cloaking.[311] The top-down design
framework, the second branch of multiscale system design, aims
to remove the constraints imposed on the microstructure geome-
tries to allow the use of either pre-specified or freeform unit cells
in assembling the full structure (Figure 22).[34,312–316] This frame-
work, in its ideal form, can unleash the highest potential of meta-
materials. Specifically, a large database of microstructures is first

constructed, containing different geometries and precomputed
properties (Figure 22a). Since the complex unit cell geometries
do not have inherent low-dimensional representations as in the
bottom-up framework, the property space of the database will
serve as the design space for the property distribution optimiza-
tion at the macroscale. After that, the property distribution at the
macroscale cascades to the microscale (Figure 18) and, based on
this, the corresponding microstructures are generated or fetched
from the database to fill each element in the full structure. There-
fore, there is no need to do the nested optimization and property
evaluation at the microscale during the design process, which
significantly improves the efficiency during the design of struc-
tures. However, to ensure compatibility between adjacent unit
cells, these methods still need to force unit cells to be similar in
geometries or compatible on the shared boundaries, which limits
the range of achievable properties.

To address this issue, Schumacher et al.[35] proposed to con-
struct a database with different metamaterial families. Unit cell
geometries are similar within each family but distinctly differ-
ent across families. They recognized that these families cover
different regions but would overlap in the property space. The
overlapped regions contain candidates with various geometries
for the same properties. The best match can then be selected
from those candidates for compatible boundaries. This com-
patible tiling keeps the design performance at the macroscale
matches with the evaluation with homogenization. Later, Zhu
et al.[36,82] discarded the concept of families and generated a larger
and richer database by stochastically adding and removing mate-
rials from microstructures in the database (Figure 22b). In the as-
sembly stage, a random-search-based method was used to select
microstructures with compatible boundaries to realize the target
mechanical properties at each point in the macroscale structure.

However, due to the large amount and diverse shapes of mi-
crostructures, an immense combinatorial space needs to be ex-
plored through stochastic methods to form compatible bound-
aries between adjacent unit cells. Moreover, while these stud-
ies proposed elaborate methods for database construction, they
lacked an effective representation and retrieval method for mi-
crostructures. As a result, it is challenging to incorporate these
large databases into the multiscale design in a scalable way. This
might also be the reason that these studies only focused on unit
cells with isotropic or cubic symmetry.

In contrast, Bastek et al.[317] focused on truss metamaterials
with anisotropic stiffness tensor. The unit cells in the database are
generated by randomly superimposing and tessellating unique
topology types, followed by affine deformations to break the sym-
metry and enhance anisotropy. Using a modified tandem neural
network, they established an inverse mapping from target prop-
erties to corresponding geometry parameters. While this study
does not involve multiscale design, it introduced an interpola-
tion scheme in topology and reciprocal lattice space (similar to
de-homogenization), enabling graded transitions between dis-
tinct unit cells (Figure 22c). Although the interpolation scheme
can improve the compatibility between microstructures, it re-
quires an extra user-defined transition layer between every pair
of unit cells. Additionally, the interpolation in geometries does
not guarantee smoothly varying properties across transitions.
Wang et al.[66,257] also focused on anisotropic metamaterials but
with free-formed microstructures (Figure 22d). To tackle the
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Figure 22. Top-down methods. a) Design framework using discrete unit cells with cubic symmetry and predefined compatibility. The top row shows
two pairs of compatibly connected isotropic unit cells in the database. Reproduced with permission from the authors.[34] b) Design framework using
randomly generated isotropic unit cells with two constituents. Reproduced with permission.[82] Copyright 2017, Association for Computing Machinery.
c) Functionally graded structure by interpolating between different anisotropic truss metamaterials.[317] d) Design framework using randomly generated
anisotropic unit cells. Reproduced with permission.[66] Copyright 2020, Elsevier B.V. d) Multiscale design with stochastic growth rules. Reproduced with
permission.[88] Copyright 2022, American Association for the Advancement of Science.

aforementioned challenges associated with the multiscale de-
sign, they simultaneously trained a VAE and an NN-based
property predictor to map complex microstructures into a low-
dimensional, continuous, and organized latent space. They
found that the latent space of VAE provided a distance met-
ric to measure shape similarity, enabled interpolation between
microstructures, and encoded meaningful patterns of variation

in geometries and properties. These characteristics enabled an
effective selection of diverse unit cell candidate sets from the
database to increase the chance of compatible assembly. The
shape similarity metric was also utilized as a metric for geo-
metrical compatibility between unit cells. By combining both ge-
ometrical and mechanical compatibility measures, the assem-
bly process was formulated as an energy-minimization problem
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on a grid-like graph and solved efficiently by dual decomposi-
tion. This method has been successfully applied to achieve tar-
get deformation profiles,[66] mechanical cloaking,[257] and frac-
ture resistance.[318] Following a similar direction, Wang et al.[63]

used a GAN model to learn the distribution of implicit-surface-
based geometries conditioned on given properties. By utilizing
the continuity of the GAN-generated structures and a transi-
tion layer blending technique, compatible microstructures are
inversely generated to achieve the designed properties in the as-
sembled structure. Liu et al.[88] adopt a different strategy by devis-
ing a stochastic growth rule, similar to a cellular automaton,[319]

to blend different graph-based features into irregular microstruc-
tures (Figure 22d). Good compatibility can be ensured by de-
vising special local growth rules. With the relation between the
homogenized properties and the growth rule, the full structure
can achieve the target property distribution through an automatic
growth process.

5.4. Discussion

Both data-driven multiscale frameworks have shown promise in
achieving efficient multiscale design in various applications, but
they still have limitations and are not yet ideal. In this section,
we will compare these frameworks to illustrate their respective
strengths and weaknesses, providing insights into their applica-
bility. We will also highlight critical knowledge gaps and chal-
lenges in existing research.

5.4.1. Comparison of Bottom-Up and Top-Down Frameworks

a) Efficiency The two types of frameworks both ignore the mi-
croscale details in multiscale optimization by using the unit
cell parameters (bottom-up) or effective properties (top-down)
as the design variables. This allows them to bypass nested
optimization across different scales and numerous homoge-
nization evaluations, enabling much higher computational ef-
ficiency than traditional multiscale designs. Among them, the
bottom-up framework is generally more efficient than its top-
down counterpart because the compatibility between neigh-
boring unit cells is guaranteed by the parameterized unit
cell or easily handled by adding local constraints. In the top-
down framework, when diverse microstructures are consid-
ered, an extra tiling optimization is usually needed after the
homogenization-based optimization to guarantee compatibil-
ity, which is relatively time-consuming.

b) Design Freedom The bottom-up framework uses microscale
parameters as the design variables and thus requires a param-
eterized model for unit cells. This restricts the change of unit
cell topologies. In contrast, the top-down framework directly
optimizes the effective properties, which can be adapted to
any unit-cell geometries. Therefore, the top-down framework
has higher design freedom than its bottom-up counterpart.
The flexibility of the bottom-up framework can be improved
by considering multiple classes of microstructures or the unit
cell orientation, as previously illustrated. However, this will
sacrifice some efficiency and may lead to a complex optimiza-
tion problem with more local optima.

c) Manufacturability The parameterization of unit cells in the
bottom-up framework makes it easier to impose functionally
graded constraints or filters on the geometries, which can
benefit the manufacturability. The manufacturing restriction
can also be considered in selecting the unit cell classes. In
the top-down framework, manufacturing constraints of a sin-
gle unit cell can be added to the construction of the database.
However, the manufacturability of the assembled structure
cannot be explicitly considered when designing the property
distribution. Additional steps of compatibility optimization
and post-processing are required in the assembly stage to ob-
tain manufacturable full structures.[36,66,82]

d) Generalizability The top-down method assumes weak me-
chanical coupling between unit cells and has been confined to
material designs in the realm of linear elasticity. For dynamic
applications or nonlinear cases, this coupling might not be
negligible.[21,23,320–322] Since the unit cells in the bottom-up
framework are parameterized, it is easier to consider the cou-
pling between unit cells by modeling the interaction as a func-
tion of their parameters. The bottom-up framework can also
be extended to consider strain-dependent properties in ac-
commodating nonlinear cases.[286]

5.4.2. Assumptions of Homogenization

The first-order homogenization method is the basis of most data-
driven multiscale designs to obtain the effective properties of
unit cells in the database.[60] It assumes that the stress of each
point in the macroscale only depends on its local strain value
and is not affected by neighboring unit cells.[323] This is only
valid when the microscopic length scale is much smaller than
that of the macrostructure, and when the microstructures are
periodically distributed in deterministic cases or stationally er-
godic in stochastic materials.[60] For example, in a periodic de-
sign for compliance minimization, the ratio between the sizes of
macro- and micro-structures should be 5–6 to ensure a relatively
accurate evaluation of the performance with homogenization.[324]

Most existing data-driven multiscale designs do not meet the
first-order homogenization assumption due to the aperiodic
tiling and the large unit cell size restricted by manufacturabil-
ity. However, if neighboring unit cells have a smooth change
or compatible connections within a large entire structure, ho-
mogenization can still provide relatively satisfying results as re-
ported in some studies.[35,65] Nevertheless, it is still advisable
to present the performance metrics obtained via full-scale sim-
ulation as a validation, which was rarely reported in existing
papers.

Meanwhile, reduced-order models combined with ML are
becoming promising alternatives to replace homogenization in
the multiscale deign which do not rely on first-order homoge-
nization assumption and can thus simulate the response more
accurately. For example, Wu and Fu et al.[285,325] condensed the
fine-meshed finite element (FE) model of unit cells into a super
element with only boundary nodes. Since no periodicity or scale
separation is assumed, the macro-response remains accurate for
heterogeneous design even with the size of the unit cell close
to the macrostructure. By combining proper orthogonal de-
composition and diffusion approximation methods, the relation

Adv. Mater. 2024, 36, 2305254 2305254 (36 of 45) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH

 15214095, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202305254 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

between volume fraction and the condensed stiffness matrix can
be directly obtained for the previous graded structural design
framework.

Physics-based machine learning (PBML) model is emerging
as another intriguing direction to accelerate the full-scale simula-
tion without resorting to homogenization (see section 4.2.4). This
can be a potentially useful tool to bypass the first-order homog-
enization assumption. Currently, PBML mainly focuses on for-
ward analysis instead of inverse optimization. Yao et al.[326] con-
sidered the finite element model as a special type of convolution
layer to construct FEA-Net, predicting the mechanical response
of metamaterials under external loading. Following similar ideas,
Saha et al.[327] used neural networks to replace the interpolation
functions in FEA models, which can provide fine-resolution re-
sults with lower computational expenses. While these physics-
informed methods require fewer data, they are either less effi-
cient or restricted to a single type of microstructure, compared to
the aforementioned fully data-driven methods. Although many
existing studies claim that PBML is more efficient and easy to use
than traditional FEA, most of these models can still be considered
as special FE models or PDE solvers. They used a neural network
to replace those classical approximation functions, which trans-
forms the original linear weighted-form equation into a highly
non-linear optimization problem. Stochastic gradient descents
and their variances were then used to solve the problem, which
does not guarantee convergence to the real solution. The univer-
sal applications and higher efficiency were obtained at the cost
of rigorous theoretical foundations. Also, most existing studies
compare PBML with naive FE models, instead of some more ad-
vanced FEM, which might not be a fair comparison.[49,328,329] It is
advisable for the researchers to explore both PBML and advanced
FEM in accelerating the data-driven designs for multiscale sys-
tems.

5.4.3. Task Specificity of Data Acquisition for Multiscale Design

In Task-Related Metrics under Section 3.4.1, we have briefly dis-
cussed the task specificity of data assessment within metric-level
assessment. Enlarging the scope to the system-level design op-
timization, we reiterate the task specificity based on some con-
crete results reproduced from the literature. Figure 23 shows a
set of target tasks at the system level defined by Wang et al.[66]

Assuming linear elasticity deformation in 2D mechanical meta-
materials, three design tasks are prepared to achieve different tar-
get displacements in Figure 23a. Required distributions of ho-
mogenized elasticity components (C11, C12, C22, C33) are pre-
computed for each target pattern (Figure 23b). The 240k-size
orthotropic mechanical metamaterial dataset, generated with
Pixel/Voxel (Section 3.2.1) and Perturbation (Section 3.2.2), is
used.

Figure 23c shows that the required data distributions vary sig-
nificantly contingent upon tasks. Overall, the 240-k dataset can
cover all three tasks, even if no information on them was given
before the data acquisition. The on-demand property distribu-
tion for each task is quite disparate across the tasks. For exam-
ple, the 50 × 50 properties to achieve the smiley face (red) are
relatively clustered. This implies that the wide coverage does not
benefit this particular task as much as the other two cases. But

the smiley face task demands a large portion of anisotropic sam-
ples, i.e., those having large either C11/C22 or C22/C11, as shown
in the C11 −C22 space. Thus, if known before the data acquisition,
such samples can be prioritized with an associated metric during
the data acquisition, as shown in Lee et al.[86] and Wang et al.[62]

Meanwhile, the required 4 × 20 properties to produce the bridge-
like deformation (blue) tend to widely spread in the associated
property space. Among the tasks, the bridge-like deformation de-
sign benefits most from wide coverage, which is congruent with
a generic goal of data acquisition. Even in this task, however, sam-
ples having negative Poisson’s ratio are not used; this indicates
such uniform coverage of property is not unconditionally favored,
but depends on the intended tasks. We remark that herein we in-
tentionally omit considering geometric/mechanical compatibil-
ity among building blocks to convey our point with a particular
focus on data.

In summary, for multiscale design purposes, the data acquisi-
tion and assessment are intrinsically open to subjectivity, in part
due to task specificity. Not all data holds equal utility for general
design tasks. Given a target task(s) at the system level, the data
acquisition and assessment should involve the specified task(s)
and even intentionally introduce bias, in addition to data unifor-
mity, to meet the task requirement and ensure an efficient data
collection. Herein, the uniformity is meaningful only within the
domains associated with the target tasks, as opposed to generic
scenarios of data acquisition.

5.4.4. Other Challenges

Overall, the data-driven paradigm has shown its promise in mul-
tiscale metamaterial design, with a superior capability to exca-
vate the underlying relations between properties and geometries.
However, there is a tendency in existing studies to apply off-the-
shelf models as black-box tools for multiscale design, claiming
that the universal fitting capability and high efficiency can benefit
the design process. The underlying assumptions and constraints
of the models have been constantly ignored, leaving the applica-
bility questionable.

Before applying a specific model to multiscale design, it would
be helpful to consider how it will influence the optimization
solver, and whether its outputs and assumptions agree with the
physics. For example, various training losses have been used to
evaluate the performance of ML models, which mainly focus on
the mean errors. It is not guaranteed that models trained with
these loss functions will always produce physically feasible out-
puts in the whole input domain. In some cases, this could also
lead to issues that are detrimental for optimization solvers, e.g.,
singular and negative-defined stiffness matrix, unit cells with
disconnected components, the discontinuity between different
cells, and non-differentiability and local fluctuations of the pre-
dicted responses. Some pre-trained deep NNs devised in com-
puter graphics were transferred to the applications in multiscale
design. However, hierarchical features extracted by the latent lay-
ers of these models might not be suitable for the structure de-
signs. An important characteristic in multiscale meta-material
designs is that a given macro-scale property can be achieved
by multiple micro-structures.[35,66] Nevertheless, in most existing
methods, a one-to-one mapping is assumed between properties
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Figure 23. Task specificity of data acquisition and assessment based on the case study in Wang et al.[66] a) Illustration of three system-level design
tasks associated with different target displacements: smiley face (left), mouth (center), and bridge (right). b) On-demand distributions of homoge-
nized elasticity components {C11, C12, C22, C33}. c) The distributions of required property for all the individual tasks plotted with respect to that of
the orthotropic dataset (gray), created through Pixel/Voxel and Perturbation. All the results are from Wang et al.[66] a) and b) were reproduced with
permission.[66] Copyright 2020, Elsevier B.V.

and geometries, which fails to accommodate the one-to-many na-
ture. Most databases and ML models only consider constant prop-
erty parameters of a single unit cell or periodically assembled unit
cells. They do not take into account state-dependent and history-
dependent properties, e.g., strain-dependent stiffness tensor in
nonlinear cases, and the interactions between different unit cells.
Moreover, existing research mainly focuses on simple regression
models to predict the homogenized properties and generative
models to reduce the dimension of shape descriptors for the unit-
cell design. How to use data-driven methods to improve the op-
timization procedure itself, e.g., extraction of design rules and
underlying physical knowledge, initial design recommendation,
iterative optimization strategy, and combinatorial assembly, gen-
erally remains unexplored.

6. Conclusion

We presented a comprehensive, critical review of the data-driven
design of metamaterials and multiscale systems (generally
referred to as DMD in this paper). Through our analysis, we
categorized previous research endeavors into the distinct mod-
ules of a cohesive data-driven design framework, including data
acquisition (Section 3), unit-cell level learning and optimization
(Section 4), and multiscale system designs (Section 5). In Sec-
tion 3, we examined the common practices of data acquisition
strategies, with special attention to the methodological compo-
nents of shape generation and property-aware sampling, and
to data assessment. In Section 4, we covered prior works that
utilized datasets and ML to enable acceleration of, or higher
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design freedom in, unit cell design. In Section 5, we reviewed
data-driven multiscale designs that employed databases and ML
at the unit-cell level to optimize structures across multiple scales,
meeting heterogeneous properties requirements in a top-down
or bottom-up manner. For these multiscale design efforts, the
main focus was to replace homogenization with surrogate mod-
eling, and increase design flexibility by accommodating diverse
and oriented unit cells.

Based on our literature survey, we shared our perspectives on
the current practices and suggested new avenues for future re-
search efforts. In Section 3, we disclosed that the current research
trend in DMD is arguably biased towards the final products at the
downstream modules and lacks principled methods dedicated to
data acquisition, which is critical to the successful and robust de-
ployment of DMD frameworks. To address this, more benchmark
datasets need to be made publicly available and standard dataset
assessment protocols should be established so that the contribu-
tions of future works can be rigorously appreciated. In Section 4,
we discussed the cost-benefit trade-off of the reviewed methods,
which is usually neglected in prior works. In addition, we noted
that the trustworthiness and creativity of ML models for unit cell
designs are also under-studied. There are ample opportunities to
develop interpretable or physics-informed ML methods, as well
as to enhance their uncertainty quantification and generalization
capabilities. In Section 5, we remarked that there are still many
unexplored opportunities for data-driven multiscale system de-
sign, particularly in areas such as extracting design rules, discov-
ering physical knowledge, providing initial design recommenda-
tions, facilitating iterative optimization strategies, and enabling
combinatorial assembly.

Overall, ML has shown promise in metamaterial design with
its superior capability to excavate the complex relations between
properties and geometries. Despite the potential of the data-
driven design approaches we reviewed, it is important to ac-
knowledge that the field is still in its early stages and faces many
grand challenges. Addressing these challenges means that the
disconnect between the two primary approaches – data-driven
and physics-based – needs to be resolved, which will require care-
ful consideration of the cost-benefit and trustworthiness of ML
methods, as well as collaboration between various disciplines.
We believe that the tighter integration of physics and data-driven
methods can unlock exciting possibilities for metamaterials de-
sign. Towards this future, we hope our review contributes to pro-
moting interdisciplinary collaborations and bridging the gap be-
tween the two camps.
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